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Since the initial publication of Huet al. (1992,Theor. Comput. Fluid Dyn.3,
285), the numerical method developed for direct simulations of fluid–solid systems
using the arbitrary Lagrangian–Eulerian (ALE) technique has undergone continuous
modifications. Some of the modifications were described in H. H. Hu (1996,Int.
J. Multiphase Flow22, 335). In this paper, we will present the most up-to-date
implementation of the method and the results of several benchmark test problems.
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1. INTRODUCTION

Numerical simulations of fluid–solid two-phase flow systems can be classified into dif-
ferent categories. The most common approach is to use the continuum theory that views
the solid and the fluid as interpenetrating mixtures, each being governed by conservation
laws, either postulated or derived by averaging (see, for example, Ishii [39], Zhang and
Prosperetti [69], Gidaspow [23], Fan and Zhu [15], and Drew and Passman [13]). This
Eulerian continuum approach results in field equations for the flow properties for all phases
in the system. It also leads to unknown terms representing the interactions between the
phases. These terms must be modeled to close the description of the system. The nature of
the detailed interactions between the solid and the fluid cannot be understood from the ap-
plication of mixture theories alone. However, once these interaction terms are determined,
the Eulerian continuum approach is most efficient and has been widely used in multiphase
flow simulations.
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A second approach in multiphase flow simulations is Lagrangian particle tracking, or
Lagrangian numerical simulation (LNS). This approach provides a direct description of the
particulate flow by tracking the motion of individual particles. In LNS, the fluid satisfies the
continuum equations that are solved on a fixed field in the usual Eulerian way. The particle
motion is governed by Newton’s second law for rigid particles with empirical forms of
the hydrodynamic forces. When the particle concentration is low, models with one-way
coupling are often used. In these, the motion of the particles is determined by the fluid flow,
but the particle motion does not influence the fluid flow. In models with two-way coupling, a
momentum exchange term could be introduced into the fluid equations to take into account
the effects of the particle motion on the fluid flow (see McLaughlin [52]). Andrews and
O’Rourke [3] and Snideret al. [66] introduce a scheme that considers the particle phase
both as a continuum and as a discrete phase. In this way, they can track the motion of the
particles and at the same time model the interparticle stress. This results in a computational
method for multiphase flows that can handle particulate loading ranging from dense to dilute
and particles of different sizes and materials. As in the Eulerian continuum approach, the
LNS requires the empirical forms of the hydrodynamic forces acting on the solid particles.
These forces are normally determined from certain dilute conditions that do not account,
for particle–particle or particle–boundary interactions.

The clusters and anisotropic microstructures observed in fluid–solid systems are the
results of solid particle migrations produced by particle–particle and particle–wall interac-
tions. These local rearrangement mechanisms are mediated by things such as hydrodynamic
forces and moments acting on the solid particles, wake interactions, and vortex shedding.
The third type of approach to simulating the motion of both the fluid and the solid particles is
termed the direct numerical simulation (DNS). In DNS, the hydrodynamic forces acting on
the solid particles are directly computed from the fluid flow, and the motion of the fluid flow
and solid particles are fully coupled. The DNS of the exact particle motion in a fluid may be
the only theoretical tool capable of studying the nonlinear and geometrically complicated
phenomena of particle–particle and particle–wall interactions.

In DNS, it is possible to simplify the flow description considerably by ignoring the vis-
cous effects completely (inviscid potential flow) or by ignoring the fluid inertia completely
(Stokes flow). Potential flow simulations (see, Sangani and Didwania [61] and Sangani and
Prosperetti [62]) do lead to cross-stream alignment of particles in fluidized systems, but the
wakes and the other nonlinear mechanisms for the fundamental arrangement of particles
in a fluidized suspension are absent. Brady and co-workers (see Brady and Bossis [9] and
Brady [8]) have developed numerical techniques (Stokesian dynamics) for simulating the
motion of a large number of particles in Stokes flows. These simulations are appropriate
for colloidal suspensions in the limit of zero particle Reynolds number.

For simulations of fluid–solid systems at finite Reynolds numbers, a number of numerical
methods have been developed in recent years. The first method is termed the ALE (arbitrary
Lagrangian–Eulerian) particle mover. The ALE particle mover uses a technique based on
a combined formulation of the fluid and particle momentum equations, together with an
arbitrary Lagrangian–Eulerian (ALE) moving, unstructured, finite-element mesh technique
to deal with the movement of the particles. It was first developed by Hu and co-workers
[28, 30]. The method has been used to solve particle motions in both Newtonian and
viscoelastic fluids under two-dimensional and three-dimensional flow geometries. It also
handles particles of different sizes, shapes, and materials. Huet al. [30] first simulated
two-dimensional sedimentation of circular and elliptic cylinders confined in a channel.
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Fenget al. [16, 17] studied the motion and interaction of circular and elliptical particles
in sedimenting, Couette, and Poiseuille flows of a Newtonian fluid. Huanget al. [33]
examined the turning couples on an elliptic particle settling in a channel. Hu [27] studied
the rotation of a circular cylinder settling close to a solid wall. Fenget al.[18] analyzed the
mechanisms for the lifting of flying capsules in pipelines. Later Hu [28] reported the results
of two-dimensional direct numerical simulation of the motion of a large number of circular
particles in a Newtonian fluid at particle Reynolds numbers around 100. Fenget al. [19]
also studied the sedimentation of circular particles in an Oldroyd-B fluid. Later, Huanget al.
[32] examined the motion of particles in Couette and Poiseuille flows of viscoelastic and
shear-thinning fluids. Huanget al. [34] investigated the effects of viscoelasticity and shear
thinning on the stable orientation of ellipses falling in a viscoelastic fluid. Patankar [55]
investigated the rheology of suspensions of particles in both Newtonian and viscoelastic
fluids. Zhu [70] studied extensively the migration and interaction of spheres in various
three-dimensional flows.

Another method for solving problems with moving boundaries uses space–time finite-
element methods (see Hughes and Hulbert [36], Tezduyaret al.[67, 68], and Hansbo [26]).
In the space–time approach, along with the spatial coordinates, the temporal coordinate is
discretized using finite-element methods. The deformation of the spatial domain with time
is reflected simply in the deformation of the mesh in the temporal coordinate. A space–time
finite-element scheme for solving fluid–particle systems was developed by Johnson [40]
and Johnson and Tezduyar [41, 42]. Using this technique, Johnson and Tezduyar [43] are
able to simulate the sedimentation of 1,000 spheres in a Newtonian fluid at a Reynolds
number of 10. The advantage of the space–time finite-element method is its generality. One
can frame the ALE finite-element scheme as a special case of the space–time method, as
discussed by Hansbo [26] and Behr and Tezduyar [4].

The third numerical method used to simulate fluid–solid systems is termed the DLM
(distributed-Lagrange-multiplier) particle mover. The basic idea of the DLM particle mover
is to extend a problem on a time-dependent geometrically complex domain to a stationary,
larger, but simpler domain (the “fictitious domain”). On this fictitious domain, the con-
straints of rigid-body motion of the particles are enforced using a distributed Lagrange
multiplier, which represents the additional body force needed to maintain the rigid-body
motion inside the particle, much like the pressure in incompressible fluid flows is used to
maintain the constraint of incompressibility. The DLM particle mover was recently intro-
duced by Glowinskiet al. [24] and has been extended to handle viscoelastic fluids (Singh
et al. [65]). It has been used to simulate the sedimentation and fluidization of over 1,000
spheres in a Newtonian fluid.

In recent years, the lattice Boltzmann method (LBM) has been developed into an alter-
native and promising numerical scheme for simulating fluid flows. Unlike the conventional
numerical schemes based on discretizations of macroscopic continuum equations, LBM is
based on microscopic models and mesoscopic kinetic equations. The fundamental idea of
the LBM is to construct simplified kinetic models that incorporate the essential physics of the
microscopic or mesoscopic processes so that the macroscopic-averaged properties obey the
desired macroscopic equations; see the recent review article by Chen and Doolen [12].
The LBM has been adapted to simulate the motion of solid particles in a Newtonian fluid.
Most of the work in this area was done by Ladd [46–48], Behrend [5], Aidunet al. [1, 2],
and Qi [59]. Their schemes are based on a fully explicit scheme, where the hydrodynamic
forces and moments acting on solid particles are first calculated from lattice Boltzmann



430 HU, PATANKAR, AND ZHU

simulation, and the motion of the solid particles is then determined from these forces and
moments using Newton’s second law. The LBM simulations can be easily performed on
parallel computers. The computational cost for simulating particle motion scales linearly
with the number of the particles. Using the lattice Boltzmann technique, Ladd [48] simulated
up to 32,000 three-dimensional spheres suspended in a fluid.

The four numerical techniques mentioned above are not the only ones available for
direct numerical simulations of multiphase flows at finite particle Reynolds numbers. For
example, the front-tracking/finite-difference method developed by Tryggvason’s group is
very powerful in simulating the motion of a large number of deformable drops and bubbles
(see, for example, Esmaeeli and Tryggvason [14]).

Since the initial publication of Huet al. [30], the ALE particle mover has undergone
continuous modifications. Some of them were documented in Hu [28]. In this paper, we
will present the most up-to-date implementation of the method and the results of several
benchmark test problems. The governing equations describing the motion of both the fluid
and the solid are laid down in Section 2. A simple fully explicit scheme is presented in
Section 3 and its stability is also discussed. Section 4 derives the combined formulation
for the fluid–solid system. An ALE mesh movement scheme is presented in Section 5.
The temporal discretization using a second-order finite-difference scheme and the spatial
discretization using a finite-element scheme of the governing equations are described in
Sections 6 and 7, respectively. The topics of automatic finite-element mesh generation
and remeshing criteria are discussed in Section 8. Two schemes of flow field projection
from one mesh onto another mesh are described in Section 9. The Section 10 outlines the
procedure for the explicit–implicit solution scheme for fluid–solid systems. The models of
particle collision are then discussed in Section 11. Finally, the results of five benchmark
test problems are presented and compared with ones from the literature.

2. GOVERNING EQUATIONS

In a system of solid rigid particles suspended in a fluid, the motion of the fluid and that
of the solid particles are fully coupled. The motion of the particles is determined by the
hydrodynamic forces and torques imposed on them by the surrounding fluid. However, the
fluid motion is strongly influenced or sometimes even driven by the particle motion—for
example, in the case of sedimentation. In direct numerical simulations, we want to calculate
the motion of both the fluid and the individual solid particles, without using empirical
correlations for the hydrodynamic forces acting on the particles. In most applications, the
Reynolds number of the flow based on the particle size is usually not small; thus the inertias
of the fluid and the solid have to be included in the model. In this section, we shall lay down
the governing equations describing the motion of both the fluid and the solid.

We shall consider the motion ofN rigid solid objects (particles) in an incompressible
fluid. DenoteÄ0(t)as the domain occupied by the fluid at a given time instantt ∈ [0, T ], and
denoteÄi (t) as the domain occupied by thei th particle(i = 1, 2, . . . , N). The boundaries
of Ä0(t) andÄi (t) are denoted as∂Ä0(t) and∂Äi (t), respectively.

The governing equations for the fluid motion inÄ0(t) are the conservation of mass,

∇ · u = 0, (1)

and the conservation of momentum,

ρf
Du
Dt
= ρf f +∇ · σ, (2)
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whereu is the velocity vector;ρf is the density of the fluid;f is the body force per unit
mass, which could be the gravitational acceleration; the material derivative of the velocity
is given by

Du
Dt
= ∂u
∂t
+ (u · ∇)u; (3)

andσ is the stress tensor. For a Newtonian fluid, the stress tensor is given by the simple
constitutive relation

σ = −p1+ 2ηD[u] and D[u] = 1

2
[∇u+ (∇u)T ], (4)

with p being the pressure andη being the fluid viscosity. For a viscoelastic fluid, the stress
tensor may be expressed as

σ = −pI + 2η2D[u] + τp, (5)

whereτp is the “polymer contribution” to the stress and may be governed by a constitutive
equation such as an Oldroyd-B fluid model [6],

λ

(
Dτp

Dt
−∇uT · τp− τp · ∇u

)
+ τp = 2η1D[u]. (6)

The parameterλ is the fluid relaxation time;η = η1+ η2 is the fluid viscosity. The
Newtonian fluid can be considered a special case withη2 = η andτp = 0. In general, the
viscosity and relaxation time of the fluid are functions of the local shear rate of the flow; for
example, viscosity laws such as Bird–Carreau, power-law, Bingham, and Herschel–Bulkley
may apply.

The rigid particles satisfy Newton’s second law for the translational motion,

mi
dV i

dt
= Gi + Fi = Gi −

∫
∂Äi (t)

σ · n dS, (7)

and the Euler equations for the rotation,

d

dt
(I iωi ) = I i

dωi

dt
+ ωi × I iωi = T i = −

∫
∂Äi (t)

(x− X i )× (σ · n) dS, (8)

where the indexi (=1, 2, . . . , N) represents different solid particles;mi is the mass, andI i

is the moment of inertia matrix of thei th particle;V i andωi are the translational and angular
velocities of the particle, respectively;Gi is the body force exerted by external fields such
as the gravity; and the hydrodynamic forceFi and momentT i acting on the particle are
obtained by integrating the fluid stress over the particle surface, as noted in (7) and (8), with
n being the unit normal vector on the surface of the particle pointing into the particle. The
centroid,X i , and the orientation (for example, the three Euler angles),2i , of the particle
are updated according to

dX i

dt
= V i , (9)
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and

d2i

dt
= ωi , (10)

respectively.
The boundary of the fluid domainÄ0(t) can be decomposed into three nonoverlapping

sections:(∂Ä)u, (∂Ä)σ , and∪∂Äi . On these boundary sections three types of boundary
conditions are imposed,

u = ug, on (∂Ä)u (11)

σ · n = 0, on (∂Ä)σ (12)

u = V i + ωi × (x− X i ), for x ∈ ∂Äi (t), (13)

whereug is the prescribed velocity. Expression (13) represents the no-slip condition on the
particle surface. The boundary conditions for the elastic stress are normally imposed on the
inflow boundary(∂Ä)in,

τp = τin, on (∂Ä)in (14)

where the stress,τin, is prescribed.
The initial conditions for the flow field and the particle variables are

u = u0 and τp = τ0, in Ä0(0), (15)

and

X i (0) = Xo
i , 2i (0) = 2o

i , V i (0) = Vo
i , and ωi (0) = ωo

i , for i = 1, 2, . . . , N,

(16)

where the initial velocity,u0, should be divergence-free.

3. FULLY EXPLICIT SCHEME AND ITS STABILITY

A simple approach to numerically simulating fluid–particle motion is to decouple the
motion of the fluid and solid at each time step. A fully explicit scheme is described below.

SCHEME 1. Fully Explicit Scheme.

Initialization: t0 = 0, n = 0 (index for time step).
Initialize u(x, t0) andV i (t0), ωi (t0) for i = 1, 2, . . . , N.

Do n = 1, 2, . . . ,M (total number of time steps)
Select time step1tn: tn = tn−1+1tn.
Using the particle velocitiesV i (tn−1) andωi (tn−1) as the boundary conditions,

solve for the flow field u(x, tn) and p(x, tn) by a numerical method
(traditional CFD).

Using the flow fieldu(x, tn) andp(x, tn), calculate the hydrodynamic forcesFi (tn)
and momentsT i (tn) acting on the particles.

Using the forcesFi (tn) and momentsT i (tn), update the particle velocitiesV i (tn)
andωi (tn).

Using the particle velocitiesV i (tn) andωi (tn), update particle positions and orien-
tationsX i (tn) and2i (tn).

End Do
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The above scheme is fully explicit as the particle positions and velocities are explicitly
updated at each time step. The scheme is simple and easy to implement. Unfortunately the
scheme could be unstable under certain circumstances (see Huet al. [30]). Let us consider
the initial stage of the motion of a particle accelerating from rest in an infinite medium of
quiescent fluid. In the early stages of the motion, the particle velocity is very small, with the
drag on the particle being mainly from the virtual (or added) mass force, which is caused by
the acceleration of the mass of the fluid surrounding the particle. The translational motion
of the particle takes the form

m
dV
dt
= G+ F ≈ G−mv

dV
dt
, (17)

whereG is a constant driving force such as the weight of the particle,F is the hydrodynamic
drag acting on the particle (mainly due to the virtual mass force in this situation),m is the
mass of the particle, andmv is the virtual mass of the fluid. Using the fully explicit scheme
described above, we can calculate the hydrodynamic force acting on the particle based on
the particle velocity in the previous time step, and (17) can be written as

m
dV
dt
(tn) = G−mv

dV
dt
(tn−1), (18)

or

dV
dt
(tn) = G

m
− mv

m

dV
dt
(tn−1)

= G
m
− mv

m

[
G
m
− mv

m

dV
dt
(tn−2)

]
= G

m

[
1+

(
−mv

m

)
+
(
−mv

m

)2

+ · · · +
(
−mv

m

)n−1]
+
(
−mv

m

)n dV
dt
(t0)

= 1− (−mv
m

)n

m+mv
G+

(
−mv

m

)n dV
dt
(t0). (19)

Obviously, as computation proceeds, the particle velocity oscillates with increasingly large
amplitudes when the added mass of the fluid is larger than the mass of the particle,mv ≥ m.
Therefore, this scheme is not stable. The actual value of the virtual mass,mv, depends on
the particle shape and the flow geometry. For a spherical particle in an infinite medium, the
virtual mass is equal to one-half the mass of the fluid displaced by the particle. However,
if the same sphere is moving through a tightly fitted tube, the value of the virtual mass is
much higher, since the sphere needs to accelerate more fluid both ahead and behind the
sphere. Therefore, the conditionmv ≥ m could be true for certain fluid–particle systems,
for example, those involving the motion of light particles in a fluid or the motion of particles
in some confined geometries.

To avoid the stability problem of the fully explicit scheme, a coupled scheme for solving
the flow field and particle velocities in a given time step is needed. For example, the solution
of the flow field and the forces and moments acting on the particles could be determined
iteratively with the velocities of the particles at the same time instant (an implicit scheme),
or a predictor–corrector scheme could be used to update the particle velocity. However, one
can treat the fluid and the solid particles as one system and generate a combined formulation
for this system.
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4. COMBINED FLUID–SOLID FORMULATION

In fluid–particle systems, owing to the complex, irregular nature of the domain occu-
pied by the fluid, finite-element techniques are particularly powerful for discretizing the
governing fluid equations. In order to use the finite-element method, we first seek a weak
formulation that incorporates both the fluid and particle equations of motion, Eqs. (2), (7),
and (8).

Let us introduce the function spaceV, given by

V =
{

U = (u,V i , . . . ,VN, ω1, . . . , ωN) | u ∈ H1(Ä0)
3,V i ∈ <3, ωi ∈ <3,

u = V i + ωi × (x− X i ) on ∂Äi (t), andu = ug on (∂Ä)u for i = 1, 2, . . . , N

}
,

(20)

where H1(Ä0)
3 corresponds to the space for the 3-D velocity field in the fluid, and<3

stands for the space for the particle velocities (three translational and three angular velocity
components per particle). The spaceV is a natural space for the velocity of the fluid–solid
mixture. The space for the pressure is chosen asL2(Ä0) with a zero value at a fixed point
in the domain and is denoted as

Q(Ä0) = {p | p ∈ L2(Ä0), p(x0) = 0}. (21)

Similarly, the space for the elastic polymer stress tensor is selected to beL2(Ä0)
6, which

represents six independent components, and is denoted as

T = {τ | τ ∈ L2(Ä0)
6, τ = τin on (∂Ä)in}. (22)

To derive the weak formulation of the combined fluid and particle equations of motion,
we consider a test function (the variation ofU),

Ũ = (ũ, Ṽ1, . . . , ṼN, ω̃1, . . . , ω̃N) ∈ V0, (23)

where the variational spaceV0 is the same asV, except thatu = 0 on(∂Ä)u. We shall define
the variational spaceT0 to be the same asT, except thatτ = 0 on(∂Ä)in. Multiplying (2)
by the test function for the fluid velocity,ũ, and integrating over the fluid domain at a time
instantt , we have∫

Ä0

ρf

(
Du
Dt
− f
)
· ũ dÄ+

∫
Ä0

(σ : ∇ũ) dÄ−
∑

1≤i≤N

∫
∂Äi

(σ · n) · ũ dS= 0. (24)

The test function for the fluid velocity on the particle surface will be replaced with the test
functions of the particle velocities according to the no-slip condition (13). Furthermore,
using the equations of motion for the particles (7) and (8), we obtain

−
∫
∂Äi

(σ · n) ũ dS= −
∫
∂Äi

(σ · n) · [Ṽ i + ω̃i × (x− X i )] dS

= −Ṽ i ·
∫
∂Äi

(σ · n) dS− ω̃i ·
∫
∂Äi

(x− X i )× (σ · n) dS

= Ṽ i ·
(

mi
dV i

dt
−Gi

)
+ ω̃i · d(I iωi )

dt
. (25)
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Substituting (25) into (24), we find the combined fluid–particle momentum equation∫
Ä0

ρf

(
Du
Dt
− f
)
· ũ dÄ +

∫
Ä0

σ : D[ũ] dÄ+
∑

1≤i≤N

Ṽ i ·
(

mi
dV i

dt
−Gi

)

+
∑

1≤i≤N

ω̃i · d(I iωi )

dt
= 0. (26)

The stress tensor in (26) can be replaced with (5). The weak formulations for the mass con-
servation (1) and the constitutive equation (6) can also be similarly obtained by multiplying
their corresponding test functions and integrating over the fluid domain.

In summary, the weak formulation for the combined equations of the fluid–particle system
is as follows:

Find (U, p, τp) ∈ V×Q× T, such that∫
Ä0

ρf

(
Du
Dt
− f
)
· ũ dÄ+ 2

∫
Ä0

η2D[u] : D[ũ] dÄ−
∫
Ä0

p(∇ · ũ) dÄ+
∫
Ä0

τp : D[ũ] dÄ

+
∑

1≤i≤N

Ṽ i ·
(

mi
dV i

dt
−Gi

)
+
∑

1≤i≤N

ω̃i · d(I iωi )

dt
= 0 ∀Ũ ∈ V0 (27)

∫
Ä0

p̃∇ · u dÄ = 0 ∀ p̃ ∈ Q (28)∫
Ä0

τ̃ :

[
λ

(
Dτp

Dt
−∇uT · τp− τp · ∇u

)
+ τp− 2η1D[u]

]
dÄ = 0 ∀τ̃ ∈ T0. (29)

It is noted that in the combined momentum equation (27) for the fluid–particle system,
the hydrodynamic forces and moments acting on the particles do not explicitly appear in
the formulation. This fact comes out naturally, since these forces are internal when the
fluid and the solid particles are considered as one system. The advantage of this combined
formulation is that the hydrodynamic forces and moments need not be explicitly computed.
More importantly, the scheme based on this formulation is not subject to the numerical
instability which can arise when the equations of fluid and particle motion are integrated
with explicitly computed hydrodynamic forces and moments, as discussed in the previous
section.

5. ARBITRARY LAGRANGIAN–EULERIAN (ALE) MESH MOVEMENT

As we are expecting a large number of solid particles moving freely in the fluid, the domain
occupied by the fluid is irregular and changes with time. To handle the movement of the
domain, an arbitrary Lagrangian–Eulerian (ALE) technique can be used. In this section
we describe this technique and discuss the methods for controlling the mesh movement. A
general kinematic theory for the ALE technique was originally introduced by Hugheset al.
[37].

In an ALE formulation, the material time derivative (3) of the velocity at a given pointx
in the fluid domain and at a time instantt is written as

D

Dt
u(x, t) = δu

δt
+ [(u− û) · ∇]u, (30)
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where

δ

δt
u(x, t) = ∂

∂t
u(x(χ, t), t)|χfixed (31)

is the referential time derivative keeping the coordinates,χ , in the referential domain con-
stant. The functionx(χ, t) can be viewed as a mapping from the fixed referential domain to
the spatial domainÄ0(t) where the fluid mechanics problem is posed. The velocityû(x, t)
is the velocity of the domain (or the mesh velocity) and is defined as

d

dt
x(χ, t) = û. (32)

When the referential domain coincides with the spatial domain at the current time,χ = x,
we haveû = 0, and the referential time derivative (31) reduces to the local Eulerian time
derivative. When the mesh velocity coincides with the velocity of the material particles,û =
u, the referential time derivative (31) recovers the Lagrangian (or material) time derivative.

In general, the domain (or mesh) velocity in (32) is only constrained at the boundary of
the domain. It has to follow the motion of the particles and the motion of the confining flow
geometry. In the interior of the domain, the mesh velocity is largely arbitrary.

If the deformation of the domain is prescribed, or somewhat predictable, the mesh velocity
in the interior can be expressed simply as algebraic functions of the motion of the nodes at
the boundary, such as the ones used in Huerta and Liu [35] and Nomura and Hughes [54].

For more complicated motion of particles in a fluid, the mesh motion in the interior of
the fluid can be assumed to satisfy an elliptic partial differential equation, such as Laplace’s
equation, to guarantee its smooth variation,

∇ · (ke∇û) = 0 inÄ0(t), (33)

whereke is a function introduced to control the deformation of the domain such that the
region away from the particles absorbs most of the deformation, while the region next to the
particles is relatively stiff and retains its shape better. Here, we chooseke to be the inverse
of the local element volume. This mesh movement scheme was used by Hu [28]. It should
be noted that the components of the mesh velocityû are not coupled and can be solved
separately. The boundary conditions that the mesh velocity must satisfy are

û = V i + ωi × (x− X i ), for x ∈ ∂Äi (t), i = 1, 2, . . . , N (34)

and

û = 0 on(∂Ä)u ∪ (∂Ä)σ . (35)

It is possible to use different boundary conditions for certain flow problems. With circular
or spherical particles, the mesh velocity can be allowed to slip on the particle surface; thus
the nodes on a particle surface move with the particle with its translational velocity but do
not need to rotate with the particle.

Similarly, if the particles undergo acceleration, an acceleration field,â(x, t), of the domain
can be defined as

∇ · (ke∇â) = 0 inÄ0(t) (36)
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with the boundary conditions given by

â= V̇ i + ω̇i × (x− X i )− ωi × V i , for x ∈ ∂Äi (t), i = 1, 2, . . . , N (37)

and

â= 0 on(∂Ä)u ∪ (∂Ä)σ , (38)

whereV̇ i = dV i /dt andω̇i = dωi /dt. This mesh acceleration field is useful when a higher
order scheme is needed to discretize Eq. (32) for the mesh movement.

A similar mesh movement scheme was described by Johnson [40]. In his implementation,
the domain is modeled as a linear elastic solid, and thus the equations of linear elasticity
were used to solve for the mesh velocity in the interior of the domain based on the given
boundary deformation. Thus the components of the mesh velocity are coupled in the scheme
and have to be solved together. Johnson [40] also used a variable stiffness coefficient to
control the mesh deformation so that most of the mesh deformation is absorbed by the larger
elements in the mesh and the small elements are stiffer and retain their shape better.

The weak formulations for the equations of the mesh velocity (33) and the mesh accel-
eration (36) can be written as

Find û ∈ Vmesh 1andâ ∈ Vmesh 2, such that∫
Ä0

(ke∇û · ∇ ˜̂u) dÄ = 0 ∀ ˜̂u ∈ Vmesh 0 (39)

and ∫
Ä0

(ke∇â · ∇ ˜̂a) dÄ = 0 ∀ ˜̂a ∈ Vmesh 0, (40)

where the function spaces are defined as

Vmesh 1= {û ∈ H1(Ä0)
3; û = V i + ωi × (x− X i ) on ∂Äi ; û = 0 on(∂Ä)u ∪ (∂Ä)σ },

(41)

Vmesh 2= {â ∈ H1(Ä0)
3; â= V̇ i + ω̇i × (x− X i )− ωi × V i on ∂Äi ;

â= 0 on(∂Ä)u ∪ (∂Ä)σ }, (42)

and

Vmesh 0= {û ∈ H1(Ä0)
3; û = 0 on∂Ä0}. (43)

6. TEMPORAL DISCRETIZATION—FINITE-DIFFERENCE SCHEME

Owing to the special nature of the temporal coordinate, the time derivatives in the system
of equations are usually discretized by simpler finite-difference methods. In this section, we
introduce a finite-difference scheme to replace the time derivatives in the combined fluid–
particle system of (27)–(29). We shall consider all the terms in the equations (27)–(29) at
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a given instantt = tn+1 (fully implicit discretization). First, the referential time derivative
in (31) can be discretized as

δu
δt
(x, tn+1) ≈ αu(x, tn+1)− u(x̄, tn)

1t
− β δu

δt
(x̄, tn), (44)

where1t = tn+1− tn is the time step, and the mesh nodes are moved according to an
integrated version of (32),

x = x̄+ û(x̄, tn)1t + â(x̄, tn)
1t2

2
. (45)

The approximation in (44) is first-order accurate in time when (α = 1, β = 0). It can be
improved to second-order accurate in time by selecting (α = 2, β = 1), which is a variation
of the well-known Crank–Nicolson scheme.

Therefore, the material time derivative (30) can be written as

Du
Dt
(x, tn+1) ≈ αu(x, tn+1)− u(x̄, tn)

1t
− β δu

δt
(x̄, tn)

+ [(u(x, tn+1)− û(x, tn+1)) · ∇] u(x, tn+1). (46)

Similarly, the time derivatives of the particle velocities in (7) and (8) can be discretized
as

d

dt
V i (tn+1) ≈ αV i (tn+1)− V i (tn)

1t
− β d

dt
V i (tn) (47)

and

d

dt
(I iωi )(tn+1) ≈ α (I iωi )(tn+1)− (I iωi )(tn)

1t
− β d

dt
(I iωi )(tn). (48)

However, the equations for the particle positions and orientations (9) and (10) are updated
using an explicit finite-difference scheme,

X i (tn+1) = X i (tn)+1tV i (tn)+ (1t)2

2
V̇ i (tn) (49)

and

2i (tn+1) = 2i (tn)+1tωi (tn)+ (1t)2

2
ω̇i (tn). (50)

As mentioned above, in the weak formulations of (27), (28), and (29), the spatial domain
and all the functions in the integrals are evaluated at a given time instantt = tn+1 or frozen
at this time instant. The time derivatives in (27) and (29) are kept inside the integral and are
replaced by expressions such as (46), which gives∫

Ä0

ρf

(
α

1t
u+ (u− û) · ∇u

)
· ũ dÄ+ 2

∫
Ä0

η2D[u] : D[ũ] dÄ−
∫
Ä0

p(∇ · ũ) dÄ

+
∫
Ä0

τp : D[ũ] dÄ+ α

1t

∑
1≤i≤N

mi V i · Ṽ i + α

1t

∑
1≤i≤N

(I iωi ) · ω̃i
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=
∫
Ä0

ρf

(
α

1t
u(x̄, tn)+ β δu

δt
(x̄, tn)+ f

)
· ũ dÄ

+
∑

1≤i≤N

(
α

1t
mi V i (tn)+ βmi

d

dt
V i (tn)+Gi

)
· Ṽ i

+
∑

1≤i≤N

(
α

1t
(I iωi )(tn)+ β d

dt
(I iωi )(tn)

)
· ω̃i (51)

and ∫
Ä0

τ̃ :

(
λ
α

1t
τp+ λ(u− û) · ∇τp− λ(∇uT · τp+ τp · ∇u)+ τp− 2η1D[u]

)
dÄ

=
∫
Ä0

λ

(
α

1t
τp(x̄, tn)+ β δτp

δt
(x̄, tn)

)
: τ̃ dÄ. (52)

Since the domain of integration and all the functions in the integrals, unless specified
otherwise, are all evaluated at the current time instanttn+1, the temporal discretization in
(51) and (52) is fully implicit and unconditionally stable. The functions inside the integrals
on the right-hand sides of (51) and (52) are known (they are the computed solution of the
previous time step). Although the domain on which these functions are defined, which is the
old domainÄn = Ä0(tn), is not the same as the domain of the integration, which is the new
domainÄn+1 = Ä0(tn+1), the integration can be perceived as the integration over the fixed
referential domain. The location of the grid in the new domain,x, and its correspondence
in the old domain,̄x, is the same in the referential domain. Expression (45) provides the
mapping between the old and the new domains.

One should be careful in using (45) to update the nodes on a particle surface, especially
using the first-order scheme. If one simply uses the velocity due to the rigid-body motion,
the body shape will become more and more distorted, as depicted in Fig. 1 for the case
of a rotating rectangular particle. The numerically updated position of its corner A will be
located at A′′ instead of the desired position A′, after the particle rotates 90◦. This is purely
a numerical artifact. To keep the shape of the rigid body during the simulation, the nodes
on the particle surface should be simply reset to the surface at each time step.

FIG. 1. Distortion of the particle shape due to the improper update of the nodes on the particle surface.
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7. SPATIAL DISCRETIZATION—GALERKIN FINITE-ELEMENT SCHEME

In general, the spatial discretization of a partial differential equation can be accomplished
by a number of numerical methods. However, in our fluid–particle systems, because of the
complex, irregular nature of the domain occupied by the fluid, finite-element methods are
particularly attractive. In this section, we discuss the approximation of the weak formulations
of (28), (51), and (52) by a Galerkin finite-element formulation and the proper choices of
the interpolation functions for the fluid velocity, pressure, and stress.

The fluid domainÄ0 is first approximated by a finite-element triangulationTh, whereh
is the typical mesh size. To fit the surface of the particles, curved P2 quadratic elements are
more appropriate. For two-dimensional problems, these elements are triangles with 6 basis
functions that are second-order polynomials defined on 3 vertices and 3 mid-nodes on each
side of the triangle, as shown in Fig. 2. For three-dimensional problems, these elements are
tetrahedrons with 10 basis functions that are second-order polynomials defined on 4 vertices
and 6 mid-nodes on each edge of the tetrahedron. The curved quadratic line segments
in these elements approximate the local surface curvature of the particle, as indicated in
Fig. 2.

Subsequently, the function spaces,V, Q, T, are approximated by their corresponding
finite-dimensional counterparts defined on the triangulationTh. In this particular imple-
mentation, we use a mixed type of finite-element, where different interpolation functions
are chosen for the different unknown variables. The discrete solution for the fluid velocity is
approximated by piecewise quadratic functions and is assumed to be continuous all over the
domain (P2). Thus in a finite-element, the velocity is locally interpolated with its values on
all 6 nodes in two dimensions or 10 nodes in three dimensions. The discrete solution for the
pressure is piecewise linear and continuous (P1). The discrete solution for the components
of the stress tensor is also piecewise linear and continuous (P1). In a finite-element, they
are locally interpolated only with their values on the vertices. This P1/P2 element for the
pressure and velocity is known to satisfy the LBB condition.

One of the advantages of choosing this type of mixed finite-element is that it reduces the
cost of mesh generation in comparison with that for the finite-element method using equal-
order (linear) interpolation functions for both the velocity and the pressure. For a given
desired accuracy of the numerical solution, a coarser mesh with fewer elements would be
needed with quadratic velocity interpolation (P2 element) than with linear interpolation
function (P1 element). Such cost savings could be considerable for simulations of large

FIG. 2. Curved 6-node triangle and 10-node tetrahedron. The curved line/surface is next to the particle surface.
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numbers of particles where the total number of elements is large and the frequency with
which the mesh is regenerated (to be discussed in the next section) is also high.

There is another advantage of using the P2 element for the velocity field: When two
particles are approaching each other or are moving with respect to the other, in the lubrication
limit the velocity profile across the gap between the particles is parabolic. Therefore, the
P2 element will capture the exact solution in the region between two particles near contact,
even with only a single layer of elements. With the linear P1 elements, a single element
across the gap between two particles near contact would create mesh locking and the failure
of the numerical scheme. In such a situation, a few layers of elements are needed in the
gap region between two moving particles, and a special finite-element mesh generator is
needed to guarantee that [43].

On a given finite-element mesh and with the finite-element interpolation functions chosen
above, the weak formulations (28), (51), and (52) would reduce to a nonlinear system of
algebraic equations. This nonlinear system can be solved by a Newton–Raphson algorithm.
In each step of the Newton–Raphson iteration, one solves a linear system of the form

A1 A2 G1 B1

A3 A G B

Q1 Q D 0

BT
1 BT 0 0




U

u

τ

p

 =


fU

fu

fτ

f p

 , (53)

where all submatrices in the system are sparse. In general, the system is not symmetric.U is
the vector combining all the translational and angular velocities of the solid particles;u, τ ,
andp represent, respectively, the vectors collecting all the fluid velocity, stress, and pressure
unknowns at grid points in the fluid. In (53) the fluid velocity unknowns on the particle
surface are eliminated with the particle velocities using the relationship for the rigid-body
motion. The vector on the right-hand side of (53) is the discretized form of the residual of
the system for a given trial flow field during the nonlinear iteration.

The weak formulations for the mesh velocity (39) and the mesh acceleration (40) can also
be approximated on the finite-dimensional function spaces based on the linear polynomials
(P1 element). The final linear systems of algebraic equations are

H û = fm1 (54)

and

H â= fm2, (55)

whereH is symmetric and positive definite. In (54) and (55),û andâ represent, respectively,
the vectors collecting all the mesh velocity and the mesh acceleration unknowns at grid points
in the fluid. The vectors on the right-hand side of (54) and (55) are due to the boundary
conditions on the surface of the particles.

The algebraic systems (53) and (54) are coupled since the matrixA in (53) depends on
the mesh velocity field̂u. Thus, (53) and (54) need to be solved iteratively at each time step.

The linear system of algebraic equations (53) can be solved with an iterative solver using
a preconditioned generalized minimal residual (GMRES) scheme or biconjugate gradient
stabilized algorithm (BICGSTAB) (see Saad [60]). These schemes are suitable for the
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nonsymmetric matrix in the system (53). In simulations with a GMRES scheme, we set
the size of the Krylov subspace to around 20 for good convergence. To make the iterative
solver converge, use of a proper preconditioner is essential. The preconditioners, such as
ILU(0) or ILU(t) (incomplete LU factorization without or with controlled fill-ins), when
applied to the global system, are found to be quite robust and efficient. For more efficient
implementations, one may take the advantage of the structure of the system in (53), and
design different preconditioners for different parts of the equations within the system. The
design of more efficient and reliable preconditioners, especially for parallel computation,
is still the topic of active research [49, 60, 63].

The symmetric and positive definite systems of (54) and (55) can be solved iteratively
with the conjugate gradient method. A preconditioner such as ILU(0) can be used to improve
the convergence.

8. MESH GENERATION

In simulations of fluid–particle systems, complicated interactions of particles make the
geometry of the domain occupied by the fluid complex and irregular. We therefore choose
to use unstructured finite-element grids (meshes) to cover the computational domain.

The first task in simulating the motion of a fluid–particle system is to generate a finite-
element grid based on the initial positions of the particles in the domain. We developed an
automatic mesh generator for this purpose. The mesh generator first creates a uniform grid
on all the particle surfaces and boundary sections. It then checks the distance between the
boundary nodes belonging to different particles or boundary sections. If the distance is less
than a certain value, for example, the gap between two corresponding particles, the mesh
generator performs a refinement by inserting nodes locally. The purpose of this boundary
grid refinement is to eventually generate a fine mesh in the regions where it is needed. With
the complete boundary grid information, the mesh generator next generates the elements
in the interior of the domain using the Delaunay–Voronoi methods (see, George [22]). Our
3D-volume mesh generator is built around the package GHS3D developed by George and
Hecht in INRIA. Finally, the middle nodes are added on the edges of the mesh to form
P2/P1 mixed elements used in our finite-element scheme.

In computing solid–liquid flows with a large number of solid particles, it is often necessary
to use periodic boundary conditions in one or more directions. At the periodic boundaries,
the particles frequently leave and enter the computation domain. The finite-element mesh
generator described above automatically takes care of the periodic boundaries without intro-
ducing artificial cuts on these boundaries. The artificial cuts on the periodic boundaries may
give rise to very unsatisfactory elements. Techniques for periodic finite-element mesh gen-
eration are discussed by Patankar and Hu [56], Johnson and Tezduyar [43], and Maury [51].

The mesh generator has a local refinement capability in regions formed by approaching
particles or between a particle and the surrounding wall, as mentioned earlier. There is
always at least one layer of elements in those regions, and the mesh size in those regions is
designed to be of the order of the minimum gap size between the approaching particles. The
local refinement in the gaps between particles is essential to capture the “particle collision”
process that is to be discussed in Section 11.

Examples of finite-element meshes are presented in Figs. 3 and 4. Figure 3 displays a
2-D mesh with 100 circular disks in a periodic domain between two channel walls. In the
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FIG. 3. Two-dimensional finite-element mesh in a channel flow with 100 circular disks.

figure, straight lines are used to connect three vertices of a triangle. However, the curved P2
triangles (with 6 nodes) are actually used in the simulation to fit the curved particle surfaces.
Figure 4 shows the meshes on the surfaces of two spheres and on the surface of a circular
tube.

FIG. 4. Surface meshes on the two spheres and the cylindrical tube used in the study of sedimentation of
spheres. The mesh is refined in the region of close contact.
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During a typical simulation, we start the calculation by generating a finite-element mesh
with the automatic mesh generator based on the initial particle positions in the domain.
Using this mesh, we can generate and then solve the system of algebraic equations (53),
(54). At the new time step, the old finite-element mesh will be moved using (45) according
to the mesh velocity and mesh acceleration field obtained from the previous time step. This
updated mesh is checked for the quality of its elements. If unacceptable element distortion
is detected, a new finite-element mesh will be generated with the automatic mesh generator.
The new mesh may not have any correspondence with the old mesh. The solution from the
old mesh has to be projected onto the new mesh. Once the solution is projected, computations
can proceed normally.

The quality of the mesh can be measured by checking the change in the element volume
(and/or aspect ratio) in comparison with its value in the initial undeformed mesh. The
changes of the element volume and aspect ratio are defined as

f e
1 =

∣∣log
(
Ve/Ve

0

)∣∣ and f e
2 =

∣∣log
(
Se/Se

0

)∣∣, (56)

whereVe andVe
0 are the volume of theeth element and its value in the initial undeformed

mesh, respectively;Se andSe
0 are the aspect ratio of the element and its value in the initial

undeformed mesh, respectively. The aspect ratio is defined as

Se = (l e)3

Ve
, (57)

wherel e is the maximum length of the sides of the elemente. The global quality of the
mesh is measured by the maximum mesh deformation,

f1 = max
1≤e≤Nel

(
f e
1

)
and f2 = max

1≤e≤Nel

(
f e
2

)
, (58)

whereNel is the total number of elements in the mesh. Usually, remeshing is considered
when either one of these two parameters exceeds 1.39, which corresponds to the situation
where element volume (or aspect ratio) is larger than four times or smaller than 1/4 of its
original value.

9. PROJECTION SCHEME

At each time step, we explicitly update the particle positions and move the finite-element
mesh using Eqs. (49), (50), and (45), based on the solution at the previous time step. If the
updated mesh is too distorted we need to generate a new mesh, as described in the previous
section. We then need to project the flow field defined on the old mesh onto the new mesh
to continue the simulation. Projection errors will be introduced during the process and need
to be minimized. There are a number of schemes to perform this projection. Two of them
will be discussed in this section.

Let us assume that at the time stept = tn+1, the mesh nodes moved from̄x to x according
to Eq. (45). Supposing that the updated mesh is found to be too distorted, a new meshy is
generated. The meshesy andx cover the same domain occupied by the fluid att = tn+1.
Since we have calculated the flow field at the previous step, all the flow properties are
known. Let us consider one of the flow properties,ϕ(x̄, tn). The objective of the projection
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scheme is to find the value of the same flow propertyϕ′(ȳ, tn) on a different mesh̄y that is
traced back from the new meshy according to

y = ȳ+ û(ȳ, tn)1t + â(ȳ, tn)
1t2

2
. (59)

Since we do not have the velocityû and the acceleration̂a on the mesh̄y, calculating the
direct projection fromϕ(x̄, tn) to ϕ′(ȳ, tn) is difficult. However, since the mappinḡx to x
given by (45) is affine, the projection can be performed from the meshx to the meshy,
namely, the projection fromϕ(x̄(x), tn) = ϕ̄(x, tn) toϕ′(ȳ(y), tn) = ϕ̄′(y, tn). Another way
to view this is to define the projection on the referential domain.

The first scheme is a direct local interpolation scheme. The local interpolation functions
could be linear or quadratic depending on the functions being interpolated and the type of
elements being used. To find the flow field information at each node in the new mesh, three
steps are required. In the first step, one needs to locate the element in the old mesh where
a given new node lies. An example of a search in a two-dimensional problem is depicted
in Fig. 5. The search is based on evaluating the local (area) coordinates with respect to an
element in the old mesh,

r = (x − x1)(y3− y1)− (x3− x1)(y− y1)

(x2− x1)(y3− y1)− (x3− x1)(y2− y1)
(60)

s = (x2− x1)(y− y1)− (x − x1)(y2− y1)

(x2− x1)(y3− y1)− (x3− x1)(y2− y1)
,

wherey = (x, y) is the coordinates of the given node in the new mesh;xa = (xa, ya) (a =
1, 2, 3) are the coordinates of the three vertices of the elemente encountered during the

FIG. 5. Diagram of a search scheme to find the element where a given point(x, y) lies. The search starts in
the elemente1. The arrow lines indicate the steps in the search process.
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FIG. 6. The search proceeds to the next elemente2 if r < 0, ore1 if s< 0, ore3 if 1 − r − s< 0.

search (in the updated meshx). If the local coordinates calculated from (60) satisfy

0≤ r ≤ 1, 0≤ s ≤ 1 and 0≤ 1− r − s ≤ 1, (61)

then the node(x, y) belongs to this elemente. Otherwise, the values of the local coordinates
and the information on element neighbors are used to proceed the search for the next element,
using the general rules indicated in Fig. 6. These rules are modified next to boundaries
or particle surfaces, where the search takes whatever path that is available. If a search
encounters a dead end, it backtracks to the previous possible bifurcation point and selects a
different path. This search scheme is able to get around particles in the domain and can be
easily extended to three dimensions.

The second step in this interpolation scheme is to calculate the exact local coordinates
for the node within the found element. During the search step, the elements are assumed
to be linear (with straight sides). However, they may be curved. For curved high-order
elements, the calculation for the local coordinates involves solving a set of nonlinear
equations,

x =
∑

1≤a≤Nd

xaNa(r, s), (62)

whereNd is the total number of nodes in the element andxa andNa(r, s) are the coordinates
of the nodes and the corresponding interpolation functions in the element, respectively.

Once the local coordinates(r, s) for the new node are obtained, the interpolation of a
variable at this node can be easily achieved by using the local interpolation functions and
the nodal values of the variable on the located element, that is,

ϕ̄′(y, tn) =
∑

1≤a≤Nd

ϕ̄(xa, tn)Na(r, s). (63)

One can estimate the numerical error produced in this type of projection. A simple
analysis (see Patankar [55]) shows that the projection error is of orderh2 for linear elements
and is of orderh3 for quadratic elements, whereh is the mesh size.

The second projection scheme uses a global least-squares method. With the notation
described at the beginning of this section, the projection is done by minimizing the difference
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between the function representations on the old mesh and on the new mesh, or

Minimize
∫
Ä0(tn+1)

[ϕ̄′(y, tn)− ϕ̄(x, tn)]2 dÄ(y), (64)

where the integration is performed over the new mesh. The weak formulation of (64) can
be written as

Givenϕ̄(x, tn), find ϕ̄′(y, tn) such that∫
Ä0(tn+1)

ϕ̄′(y, tn)ϕ̃(y) dÄ(y) =
∫
Ä0(tn+1)

ϕ̄(x, tn)ϕ̃(y) dÄ(y)

=
∫
Ä0(tn+1)

ϕ(x̄, tn)ϕ̃(y) dÄ(y) for ∀ϕ̃(y), (65)

whereϕ̄′(y, tn) andϕ̃(y) belong to the appropriate function spaces for the flow variables.
The integration on the right-hand side of (65) can be performed numerically, where the
values ofϕ̄(x, tn) at Gaussian quadrature points are needed. These values are calculated
using the local interpolation scheme described above. Once the function is approximated
by the finite-dimensional finite-element space, (65) reduces to a set of linear algebraic
equations and can be solved by iterative methods such as the conjugate gradient method.

The global least-squares projection scheme generally performs better than the local inter-
polation scheme. This may be due to the fact that the right-hand side of (65) is the same as
the terms on the right-hand side of (51) and (52). If the right-hand side of (65) is evaluated
exactly, the global least-squares projection scheme would be exact. Thus the projection
would not introduce any additional error, or is said to be consistent.

10. EXPLICIT–IMPLICIT SOLUTION PROCEDURE

So far we have described all the major steps needed for simulations of fluid–solid systems.
In this section, we summarize these steps and present a solution procedure for fluid–solid
systems. This procedure is termed explicit–implicit; the particle positions and the mesh
nodes in the fluid domain are updated explicitly, while the particle velocities and the fluid
flow field are determined implicitly.

SCHEME 2. Explicit-Implicit Scheme.

Initialization: t0 = 0, n = 0 (index for time step).
Generate initial meshx0 based on particle positions and orientations,X i (0),
2i (0).

Initialize u(x, t0) andV i (t0), ωi (t0) for i = 1, 2. . . . , N.
Do n = 1, 2, . . . ,M (total number of time steps)

1. Select time step1tn:tn = tn−1+1tn.
2. Update particle positions:

X i (tn) = X i (tn−1)+ V i (tn−1)1tn + V̇ i (tn−1)(1tn)2/2,

2i (tn) = 2i (tn−1)+ ωi (tn−1)1tn + ω̇i (tn−1)(1tn)2/2.

3. Update mesh nodes:

y(tn) = x̄(tn−1)+ û(x̄, tn−1)1tn + â(x̄, tn−1)(1tn)2/2.
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4. Check mesh quality; if the updated meshy(tn) is too distorted, then

generate a new meshx(tn).

project the flow field fromy(tn) ontox(tn).

5. Iteratively solve for the flow fieldu(x(tn), tn), p(x(tn), tn), τ (x(tn), tn), the
mesh velocitŷu(x(tn), tn), and the particle velocitiesV i (tn) andωi (tn).

6. UpdateV̇ i (tn), ω̇i (tn), δ/δt u(x(tn), tn), δ/δt τ(x(tn), tn) from equations such
as (47), (48), and (44).

7. Solve for the mesh accelerationâ(x(tn), tn).
End Do

The choice of the time step1tn in the scheme depends on many factors. It can be used to
restrict the maximum distance each particle is allowed to travel in that time step, to restrict
the maximum change in the particle velocity, or to avoid the collisions between the particles
and between the particle and the confining boundary walls. The time step should also be
restricted to capture unsteady dynamic behavior of the fluid motion, such as vortex shedding
in the flow.

This explicit–implicit scheme is second-order accurate in time and numerically stable. It
was first described in Huet al. [30], and since then it has been used in a number of studies
of fluid–particle systems.

11. PARTICLE COLLISION

It is not possible to simulate the motion of even a moderately dense suspension of particles
without a strategy to handle cases in which particles touch. In various numerical methods,
frequent near collisions force large numbers of mesh points into the narrow gap between
close particles and the mesh distorts rapidly, requiring an expensive high frequency of
remeshing and projection. Different “collision models” were developed to prevent near
collisions while still conserving mass and momentum. In this section, we discuss some of
these models.

It can easily be proved that smooth rigid particles in a Newtonian fluid cannot touch—the
gap between two particles cannot go to zero within a finite time. To have real collision
of smooth rigid particles, it is necessary for the fluid film between the particles to rupture
and film rupture requires physics and mathematics beyond the Navier–Stokes equations.
Besides, in practical situations, the particles are normally neither perfectly smooth nor rigid.

The first approach in modeling “particle collision” is to provide a finer zone between
the particles as the particles are approaching each other and to use smaller time steps. This
approach attempts to capture the collision process as exactly as numerically possible without
introducing any modeling. Local mesh refinement schemes, such as the ones discussed in
Section 8, are necessary. Numerical experiments based on local mesh refinements show
good stability and robustness properties [28, 30]. The smallest gap size between “collide”
particles was allowed to be as small as 10−5 times the particle diameter. Nevertheless, this
approach has the drawback that there is no control of the computational cost.

The next approach is to use the solid-body collision model with a coefficient of restitution.
This approach only models the collision process of the solid particles while neglecting the
collision process within the fluid. The fluid motion during the particle collision is quite
complicated, experiencing a singularity at the time of the particle contact. The solid-body
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collision model is only possible when using a fully explicit scheme as described in Section 3.
In this model, at each time step once the total forces on the particles are obtained, the particle
velocities and positions in (7) and (9) are explicitly updated by

Vn+1
i = Vn

i +
1t

2mi

(
Fn+1

i + Fn
i

)
(66)

and

Xn+1
i = Xn

i +
1t

2

(
Vn+1

i + Vn
i

)
(67)

for i = 1, 2, . . . , N, where1t is the time step, andFn
i andFn+1

i are the total forces acting on
the particle at time stepstn andtn+1, respectively. Using the new positions of the particles,
if the particle A is found to overlap particle B, collision occurs between these two particles.
For colliding particles A and B, their velocities after the collision need to be modified by

V̂n+1
A = Vn+1

A +
[

Vn
nA − Vn+1

nA −
(1+ e)mB

mA +mB

(
Vn

nA + Vn
nB

)]
nA (68)

V̂n+1
B = Vn+1

B +
[

Vn
nB − Vn+1

nB −
(1+ e)mA

mA +mB

(
Vn

nA + Vn
nB

)]
nB, (69)

wheree is the coefficient of restitution,VnA = VA · nA,VnB = VB · nB, andnA = −nB is
the unit normal vector pointing from the center of particle A to the center of particle B. In
deriving (68) and (69) it is assumed that linear momentum of the two particles is conserved
and that the tangential forces are zero during the collision process. The velocity correction
due to the collision is applied in an iterative fashion. The new particle positions (67) are
updated with these corrected velocities, and other particle collisions are checked again.

Different collision models (for example, the ALE particle mover and the DLM particle
mover) have been developed for the coupled solvers for the fluid and solid systems. These
collision models aim to capture the “collision process” for both the solid particles and
the fluid motion by introducing short-range forces as additional body forces acting on the
particles. They all define a security zone around the particle such that when the gap between
particles is smaller than the security zone a repelling force is activated. A repelling force
can be thought to represent surface roughness, for example. The repelling force pushes the
particles out of the security zone into the region in which fluid forces computed numerically
govern. The different strategies differ in the nature of the repelling forces and how they are
computed.

The scheme used by Glowinskiet al. [24] introduces a short-range repulsion force be-
tween particles near contact. This force takes an explicit form

Gp
i, j =

{
0, di j > Ri + Rj + δ
1
εp
(X i − X j )(Ri + Rj + δ − di j )

2, di j ≤ Ri + Rj + δ,
(70)

wheredi j is the distance between the centers of particlesi and j , Ri is the radius of the
i th particle,δ is the force range, andεp is a small positive “stiffness” parameter. A similar
repulsive force is introduced to handle the collision between the particle and wall,

Gw
i, j =

{
0, d′i j > 2Ri + δ
1
εw
(X i − X′i, j )(2Ri + δ − d′i j )

2, d′i j ≤ 2Ri + δ.
(71)
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In (71) an imaginary particle of the same size is introduced. It is located symmetrically on
the other side of the wall, atX′i, j . The distanced′i j is between the particlei and its image
with respect to the wall sectionj . Another positive “stiffness” parameterεw is introduced
to control the magnitude of this force.

Therefore, the extra body force on thei th particle, due to the collision with all other
particles and the walls, can be expressed as

G(c)
i =

N∑
j=1, j 6=i

Gp
i, j +

Nwall∑
j=1

Gw
i, j . (72)

This collision force is used in the combined momentum equations for the fluid and solid
to determine the fluid velocity field and solid velocities. In this collision scheme, the choice
of the “stiffness” parameters,εp andεw, is essential. If the parameters were too large (the
force were too small), the collisions would not be prevented. In contrast, if the parameters
were too small, the repulsive force would be too strong, and the particle would bounce too
much during the collision. In general, the optimum values of these two parameters may vary
from the test cases. In this collision scheme, there is no control on the minimum distance
between the colliding particles. The particles may still overlap.

Another strategy due to Maury [50] uses the lubrication force to separate touching
particles and also requires the touching particles to transfer tangential as well as normal
momentum.

In the collision scheme used in the ALE particle mover by Hu [28], the expression of the
repelling force is not specified. The magnitudes of these forces are such that the particles
are forces just to the edge of the security zone. One can imagine that the particles are
not smooth, and there is a contact force between the particles when they are approaching
within a distance of the size of “particle roughness.” The magnitude of this contact force is
iteratively determined by requiring that the particles not overlap and that they be in contact
just at the edge of the contact zone. In this collision model, after the new particle position
is explicitly updated using

X i (tn+1) = X i (tn)+ V i (tn)1t + V̇ i (tn)1t2/2 (73)

in step 2 of the explicit–implicit scheme described in Section 10. The collisions between the
particles and between the particle and wall are first detected. If particlei is found to contact
particle j , then a contact forceGi, j is introduced, which satisfies the relationGi, j = −G j,i .
The new positions of the particles are modified according to

X̂ i (tn+1) = X i (tn+1)+ 1t2

2mi

(
N+Nwall∑
j=1, j 6=i

Gi, j

)
, (74)

whereNwall is the number of boundary segments. The contact forces on particlei include all
contributions from the neighboring particles and the boundary segments. For particles not
in contact,Gi, j = 0. The values of all the contact forces are iteratively determined such that
the new distance between the particles originally in contact equals the size of the security
zone,

di j = |X̂ i (tn+1)− X̂ j (tn+1)| = Ri + Rj + δ, (75)

where Ri are radius of thei th particle, andδ is the thickness of the security zone. The
procedure is applied iteratively, since the new particle positions may create new contact
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points. The final values of the contact forces contribute to a “collision” force on each
particle,

G(c)
i =

N+Nwall∑
j=1, j 6=i

Gi, j , (76)

which is introduced as the additional body forces in the calculations of the flow field and
the particle motion.

Maury [51] further developed the idea presented above into a more solid mathematical
framework. The objective of the collision model is to find a modified particle configuration
set (positions and orientations)

Y = (X1,X2, . . . ,XN,21,22, . . . , 2N) ∈ <6N (77)

to minimize a functional

9(Y) =
∑
di j<δ

(di j (Y)− δ)2, (78)

wheredi j is the distance between the particlesi and j . The optimum configuration setYe

can be obtained by performing a steepest descent algorithm on9(Y). This strategy was
developed for two-dimensional smooth bodies of arbitrary shape.

It should be noted that the collision strategies that use a security zone to prevent close
contact of the particles tend to keep the particles farther apart than they ought to be, resulting
in lower particle volume fractions in the fluid–solid mixture. The size of the security zone
should be kept as small as possible. It is a balance of the accuracy of the numerical scheme
and the computational cost.

12. SAMPLE APPLICATIONS

In this section we present results of some of the direct numerical simulations using the
ALE particle mover. Most of the results presented are the works of Patankar [55] and Zhu
[70].

12.1. Sedimentation of a Single Sphere in a Tube

To check the validity of the ALE particle mover, a number of tests were performed.
Here, we shall present a few of them. All of the numerical results were obtained under the
conditions that they are insensitive (to less than 1%) to further mesh refinement, to increase
of the computation domain size, and to reduction of the time step.

The first test checks the drag on a sphere settling along the center of an infinitely long
cylindrical tube filled with a Newtonian fluid. In the simulation the fluid inertia is turned
off so that we can compare the numerical results with the exact Stokes flow solutions. We
define the ratio of the sphere diameterd to the tube diameterD as the blockage ratio

α = d/D, (79)

and we define the wall factor

K = FD/F∞ (80)

as the ratio of the terminal dragFD exerted on the sphere in the tube to the dragF∞ in the
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FIG. 7. Wall factor as a function of the blockage ratio for the settling of a sphere in a circular tube under Stokes
flow conditions. Our numerical results and the theoretical ones from Haberman and Sayre [25] are compared.

infinite domain. In our numerical simulations, we calculate the terminal velocityV of a
sphere released in a fluid of viscosityη. The drag on the sphere at the terminal velocity is
determined by its effective weight,

FD = π

6
d3(ρs− ρf)g, (81)

and the dragF∞ is given by the Stokes drag law,

F∞ = 3πηV d. (82)

The wall factorK is directly calculated using (81) and (82). Figure 7 compare the wall
factors between the results of our numerical simulations and the theoretical ones from
Haberman and Sayre [25] at various blockage ratios. The numerical results agree very well
with Haberman and Sayre’s [25] exact solution. The maximum deviation is less than 0.4%.

The next test checks the drag on a sphere settling at finite Reynolds numbers. Figure 8
shows the drag coefficientCD as a function of the Reynolds number Re at a blockage ratio
of α = 0.3125. The drag coefficient and the Reynolds number of the flow are defined as

CD = FD

ρfV2πd2/8
= 4

3

gd

V2

(
ρs

ρf
− 1

)
(83)

and

Re= ρfV d

η
, (84)

whereV is the terminal velocity of the sphere, and the drag on the sphere is calculated
from (81). The comparison is given between our numerical results and the experimental
measurements by McNownet al. [53]. Again our numerical results at finite Reynolds
numbers agree with the experimental results very well. The maximum deviation between
our numerical results and the experimental results of McNownet al. [53] is less than 0.5%.
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FIG. 8. Drag coefficient as a function of Reynolds number. Our numerical results and the experimental
measurements of McNownet al. [53] are compared. The blockage ratio of the flow isα = 0.3125.

The third test checks the transient behavior of a sphere settling along the center of an
infinitely long circular tube filled with a viscoelastic fluid. The fluid is an Oldroyd-B fluid
with viscometric properties similar to those of the M1 fluid (see Sridhar [66a]). The material
properties for this fluid areη = 30 poises,λ = 0.1 s,ρf = 0.868 g cm−3, and the viscosity
ratioη2/η = 1/8. In the test, the density of the sphere isρs = 3.581 g cm−3 and the diameter
of the sphere isd = 2 cm. Figure 9 shows the evolution of the settling velocity of the sphere

FIG. 9. Comparison of the settling velocities obtained from our full 3-D numerical simulations and from the
2-D axisymmetric simulations of Bodart and Crochet [7]. The sphere is released in a tube filled with a viscoelastic
fluid. The blockage ratios for the simulations areα = 0.1 and 0.2.
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after it is released from rest. The comparison is between the results of our fully three-
dimensional simulations and those of the two-dimensional, axisymmetric, finite-element
calculations by Bodart and Crochet [7]. Our numerical results agree almost perfectly with
their results. The maximum deviation between the results of our numerical simulations and
those by Bodart and Crochet [7] is less than 0.5%.

12.2. Migration of a Neutrally Buoyant Sphere in a Poiseuille Flow

Direct numerical simulation is an ideal tool for studying the behavior of motion of a very
few particles in a given fluid flow. It can be used to examine the mechanisms of particle
migration, particle–particle interaction, particle–wall interaction, etc. Here we show an
example of the migration of a particle in a Poiseuille flow.

Karniset al.[45] performed numerous experiments on the migration of various particles,
including spheres, rods, and disks, in a Poiseuille flow within a capillary tube. The ALE
particle mover is capable of simulating the migration of spheres under the same conditions as
those used in the experiments by Karniset al. [45]. In our simulations, a neutrally buoyant
sphere is released at a given initial radial position in a fully developed Poiseuille flow.
Figure 10 presents two trajectories for the spheres released at radial positions ofr/R= 0.21
and 0.68, whereR= D/2 is the radius of the tube. In the simulations, the fluid properties
areρf = 1.05 g· cm−3 andη = 1.2 poises, the flow rate isQ = 7.11× 10−2 cm3/s, the tube
diameter isD = 0.4 cm, and the sphere diameter isd = 0.122 cm. The two trajectories
are compared with the measured ones from the experiments of Karniset al. [45]. We see
that our numerical results agree very well with the experimental ones with a deviation
of less than 5%. From Fig. 10, we notice that the sphere released near the wall migrates
inwards, while the sphere released near the tube center migrates outwards. Therefore, there
exists an equilibrium position for the particle in a Poiseuille flow, which is the well-known

FIG. 10. Comparison of the migration trajectories of a neutrally buoyant sphere calculated in our simulations
with the ones measured in the experiments of Karniset al. [45].
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Segré–Silberberg effect. Using the ALE particle mover, Zhu [70] is able to perform an
extensively study on the effects of various parameters influencing the particle migration in
this Poiseuille flow.

12.3. Interaction of a Pair of Particles in a Newtonian Fluid: Drafting–Kissing–Tumbling

One very important mechanism that controls the particle microstructure in flows of a
Newtonian fluid is called “drafting, kissing, and tumbling” (Huet al.[29]). There is a wake
with low pressure at the back of a fluidized or sedimenting particle. If a trailing particle is
caught in the wake of the leading one, it experiences a reduced drag and thus falls faster than
the leading particle. This is called drafting, after the well-known bicycle racing strategy that
is based on the same principle. The increased speed of fall impels the trailing particle into a
kissing contact with the leading particle. Kissing particles form a long body that is unstable
in a Newtonian fluid, when its line of centers is along the stream. The same couples which
force a long body to float broadside-on cause kissing particles to tumble. Tumbling particles
in a Newtonian fluid induce anisotropy of suspended particles since on the average the line
of centers between particles must be across the stream.

Figure 11 displays a numerically simulated drafting–kissing–tumbling sequence. In the
simulation, two spheres are dropped in tandem into an infinitely long tube filled with a
Newtonian fluid; the fluid properties are selected asρf = 1 g· cm−3 andη = 1 poise, the
particle density isρs = 2 g· cm−3, the particle diameter isd = 2 cm, and the tube diameter
is D = 20 cm. This case corresponds to a particle Reynolds number of 22.

12.4. Interaction of Particles in a Viscoelastic Fluid: Chaining

The interaction of two particles in a viscoelastic fluid is quite different from that in
a Newtonian fluid. The particles still undergo drafting and kissing. However, because
broadside-on sedimentation of a long body is stable, kissing particles form a long body
that is stable and will not tumble in a viscoelastic fluid under certain conditions (see Joseph
[44]). Here we simulate the motion of two spheres of the same size released side-by-side
into a tube filled with an Oldroyd-B fluid. The ratio of the sphere diameter to the tube

FIG. 11. Interaction between a pair of particles settling in a Newtonian fluid: drafting–kissing–tumbling.
(a) streamlines att = 1.08 s (drafting); (b) streamlines att = 1.45 s (kissing); (c) streamlines att = 1.67 s
(tumbling); (d) streamlines att = 2.58 s.
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diameter isα = 0.2. The spheres are symmetrically placed in the tube with respect to the
axis of the tube with a separation distance of 1.5 times the sphere diameter. The material
properties for this fluid areη = 30 poises,λ = 0.1 s, andρf = 0.868 g cm−3, and the vis-
cosity ratioη2/η = 1/8. In the test, the density ratio of the solid to the fluid isρs/ρf = 2,
and the diameter of the sphere isd = 2 cm.

Figure 12 displays the snapshots of the positions and orientations of the particles at
various time instants. Figure 13 plots the particle trajectories, wherey is the direction along
the initial particle separation. It is observed that after the particles are released, they attract
each other. This attraction is caused by the strong shear flow on the outside surfaces of the

FIG. 12. Snapshots of the sedimentation of two spheres in a viscoelastic fluid.
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FIG. 13. Trajectories of two spheres released side-by-side in a cylindrical tube filled with a viscoelastic fluid.

particles, which produces a high pressure that pushes them toward each other. Once they are
almost in contact, they momentarily form a long body. However, broadside-on orientation of
a long body is unstable in a viscoelastic fluid, and the long body tends to turn longside along
the direction of the fall. Thus two spheres turn and eventually form a chain as they settle.

If more particles are involved in the system, they tend to form longer chains. Because a
longer chain falls faster than a shorter one, there exists a critical chain length, or a critical
number of particles in a chain (Patankar and Hu [57]). The chaining of particles in a
viscoelastic fluid only occurs when the elastic behavior of the fluid dominates. When both
the fluid inertia and the fluid elasticity are important, the particles tend to form clusters
(Patankar [55]).

12.5. Lubrication in Pressure-Driven Particulate Flows

Direct numerical simulation is very useful for studying the global behavior of a fluid–
sparticle suspension. One can both examine the short-time rheology of the suspension for

FIG. 14. Snapshots of the particle positions in a pressure-driven channel flow. White lines represent iso-lines
of velocity in thex-direction. (a) Initial positions of the particles; (b) particle positions att = 16.4 s.
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FIG. 15. Velocity component along the channel as a function of the coordinate across the channel.

a given microstructure (that is, the spatial distribution of the particles) and investigate the
long-time evolution of the microstructures in the suspension. Here we show an example
of investigating the long-time evolution of the particulate flow in a vertical channel driven
by an externally applied pressure gradient. The applied pressure gradient either assists the
gravity, causing the heavy particles to fall faster, or is sufficiently strong to pump the fluid
and the particles against the gravity. The shear stress at the channel wall is sufficiently
high to induce a velocity gradient in the fluid adjacent to the wall, causing the particles to
migrate away from the wall. We have lubricated transport of the particulates (Patankar [55]).
Figure 14 shows a typical case of this lubricated flow. It shows snapshots of 90 particles
falling in a Newtonian fluid at the initial instant and at a later time. For this simulation, the
channel width is 12 times the particle diameter, and the volume fraction of the particles is
φ = 26.8%. The Reynolds number of the flow is

Re= ρfV d

η
= 12.26, (85)

where we have used the slip velocity between the solid and fluid,V = (ρs− ρf)gd2/4η.
The nondimensional pressure gradient is defined as

Cp = 1

φg(ρs− ρf)

dp

dx
= 2 (86)

and the density ratio isρs/ρf = 1.1. We observe that the particles migrate toward the center
of the channel forming a prominent core. Figure 15 shows that the velocity profile of the
fluid becomes blunt as the result of migration of the particles away from the wall and their
concentration at the center of the channel. The core nearly falls like a rigid body so that the
velocity of the fluid varies almost linearly from the walls to the particle-rich core owing
to the absence of particles in that region. This motion can be considered to be similar to
that established when a porous piston that occupies the zone of plug flow falls inside a
channel.

13. SUMMARY

We have described a numerical method (the ALE particle mover) for simulations of fluid–
solid flow systems. This method is based on a combined formulation of the fluid and particle
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momentum equations. It uses the arbitrary Lagrangian–Eulerian (ALE) technique with a
moving, unstructured, finite-element mesh to deal with the movement of the particles. In
this method the moving finite-element mesh in the fluid flow and the particle positions are
updated explicitly, while the fluid flow and the particle velocities are solved implicitly, at
each time step. We have shown that this scheme is stable. A mesh movement and update
strategy is described, and the remeshing criteria are discussed. Detailed schemes for the
projection of the flow field from one mesh to another are presented. Different models of
particle collision are also examined.

We next computed the sedimentation and migration of spheres in both Newtonian and
viscoelastic fluids, and our results agree quantitatively with those in the literature. We also
examined the interaction of the sedimenting particles in the Newtonian and viscoelastic
fluids, and we observed the contrasting behavior of the particles: drafting–kissing–tumbling
in a Newtonian fluid against drafting–kissing–chaining in a viscoelastic fluid. Last, we
showed the long-time evolution of the microstructure of a fluid–particle suspension and
demonstrated the rheological effect on the suspension.
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