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Since the initial publication of Het al. (1992, Theor. Comput. Fluid Dyn3,
285), the numerical method developed for direct simulations of fluid—solid systems
using the arbitrary Lagrangian—Eulerian (ALE) technique has undergone continuous
modifications. Some of the modifications were described in H. H. Hu (1986,
J. Multiphase Flow22, 335). In this paper, we will present the most up-to-date
implementation of the method and the results of several benchmark test problems.
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1. INTRODUCTION

Numerical simulations of fluid—solid two-phase flow systems can be classified into c
ferent categories. The most common approach is to use the continuum theory that vi
the solid and the fluid as interpenetrating mixtures, each being governed by conserve
laws, either postulated or derived by averaging (see, for example, Ishii [39], Zhang
Prosperetti [69], Gidaspow [23], Fan and Zhu [15], and Drew and Passman [13]). T
Eulerian continuum approach results in field equations for the flow properties for all pha
in the system. It also leads to unknown terms representing the interactions betweer
phases. These terms must be modeled to close the description of the system. The nat
the detailed interactions between the solid and the fluid cannot be understood from the
plication of mixture theories alone. However, once these interaction terms are determit
the Eulerian continuum approach is most efficient and has been widely used in multipf
flow simulations.
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A second approach in multiphase flow simulations is Lagrangian particle tracking,
Lagrangian numerical simulation (LNS). This approach provides a direct description of |
particulate flow by tracking the motion of individual particles. In LNS, the fluid satisfies th
continuum equations that are solved on a fixed field in the usual Eulerian way. The part
motion is governed by Newton’s second law for rigid particles with empirical forms c
the hydrodynamic forces. When the particle concentration is low, models with one-w
coupling are often used. In these, the motion of the particles is determined by the fluid fly
but the particle motion does not influence the fluid flow. In models with two-way coupling,
momentum exchange term could be introduced into the fluid equations to take into accc
the effects of the particle motion on the fluid flow (see McLaughlin [52]). Andrews an
O’Rourke [3] and Snideet al. [66] introduce a scheme that considers the particle phas
both as a continuum and as a discrete phase. In this way, they can track the motion o
particles and at the same time model the interparticle stress. This results in a computati
method for multiphase flows that can handle particulate loading ranging from dense to di
and particles of different sizes and materials. As in the Eulerian continuum approach,
LNS requires the empirical forms of the hydrodynamic forces acting on the solid particl
These forces are normally determined from certain dilute conditions that do not accol
for particle—particle or particle—boundary interactions.

The clusters and anisotropic microstructures observed in fluid—solid systems are
results of solid particle migrations produced by particle—particle and particle—wall intere
tions. These local rearrangement mechanisms are mediated by things such as hydrodyr
forces and moments acting on the solid particles, wake interactions, and vortex shedc
The third type of approach to simulating the motion of both the fluid and the solid particles
termed the direct numerical simulation (DNS). In DNS, the hydrodynamic forces acting
the solid particles are directly computed from the fluid flow, and the motion of the fluid flo
and solid particles are fully coupled. The DNS of the exact particle motion in a fluid may |
the only theoretical tool capable of studying the nonlinear and geometrically complica
phenomena of particle—particle and particle—wall interactions.

In DNS, it is possible to simplify the flow description considerably by ignoring the vis
cous effects completely (inviscid potential flow) or by ignoring the fluid inertia completel
(Stokes flow). Potential flow simulations (see, Sangani and Didwania [61] and Sangani
Prosperetti [62]) do lead to cross-stream alignment of particles in fluidized systems, but
wakes and the other nonlinear mechanisms for the fundamental arrangement of part
in a fluidized suspension are absent. Brady and co-workers (see Brady and Bossis [9]
Brady [8]) have developed numerical techniques (Stokesian dynamics) for simulating
motion of a large number of particles in Stokes flows. These simulations are appropr
for colloidal suspensions in the limit of zero particle Reynolds number.

For simulations of fluid—solid systems at finite Reynolds numbers, a number of numeri
methods have been developed in recent years. The first method is termed the ALE (arbit
Lagrangian—Eulerian) particle mover. The ALE particle mover uses a technique basec
a combined formulation of the fluid and particle momentum equations, together with
arbitrary Lagrangian—Eulerian (ALE) moving, unstructured, finite-element mesh technic
to deal with the movement of the particles. It was first developed by Hu and co-work
[28, 30]. The method has been used to solve particle motions in both Newtonian :
viscoelastic fluids under two-dimensional and three-dimensional flow geometries. It a
handles particles of different sizes, shapes, and material®t tl [30] first simulated
two-dimensional sedimentation of circular and elliptic cylinders confined in a chann
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Fenget al. [16, 17] studied the motion and interaction of circular and elliptical particle
in sedimenting, Couette, and Poiseuille flows of a Newtonian fluid. Hueng. [33]
examined the turning couples on an elliptic particle settling in a channel. Hu [27] studi
the rotation of a circular cylinder settling close to a solid wall. Fehgl.[18] analyzed the
mechanisms for the lifting of flying capsules in pipelines. Later Hu [28] reported the resu
of two-dimensional direct numerical simulation of the motion of a large number of circul
particles in a Newtonian fluid at particle Reynolds numbers around 100. étealig[19]
also studied the sedimentation of circular particles in an Oldroyd-B fluid. Later, Haiahg
[32] examined the motion of particles in Couette and Poiseuille flows of viscoelastic a
shear-thinning fluids. Huanet al.[34] investigated the effects of viscoelasticity and shea
thinning on the stable orientation of ellipses falling in a viscoelastic fluid. Patankar [5
investigated the rheology of suspensions of particles in both Newtonian and viscoela
fluids. Zhu [70] studied extensively the migration and interaction of spheres in vario
three-dimensional flows.

Another method for solving problems with moving boundaries uses space—time fini
element methods (see Hughes and Hulbert [36], Tezdetyalr[67, 68], and Hansbo [26]).
In the space—time approach, along with the spatial coordinates, the temporal coording
discretized using finite-element methods. The deformation of the spatial domain with ti
is reflected simply in the deformation of the mesh in the temporal coordinate. A space—t
finite-element scheme for solving fluid—particle systems was developed by Johnson |
and Johnson and Tezduyar [41, 42]. Using this technique, Johnson and Tezduyar [43
able to simulate the sedimentation of 1,000 spheres in a Newtonian fluid at a Reyn
number of 10. The advantage of the space—time finite-element method is its generality.
can frame the ALE finite-element scheme as a special case of the space—time methc
discussed by Hansbo [26] and Behr and Tezduyar [4].

The third numerical method used to simulate fluid—solid systems is termed the DL
(distributed-Lagrange-multiplier) particle mover. The basic idea of the DLM particle mov
is to extend a problem on a time-dependent geometrically complex domain to a station
larger, but simpler domain (the “fictitious domain”). On this fictitious domain, the cor
straints of rigid-body motion of the particles are enforced using a distributed Lagrar
multiplier, which represents the additional body force needed to maintain the rigid-bc
motion inside the particle, much like the pressure in incompressible fluid flows is usec
maintain the constraint of incompressibility. The DLM particle mover was recently intre
duced by Glowinsket al.[24] and has been extended to handle viscoelastic fluids (Sing
et al.[65]). It has been used to simulate the sedimentation and fluidization of over 1,C
spheres in a Newtonian fluid.

In recent years, the lattice Boltzmann method (LBM) has been developed into an al
native and promising numerical scheme for simulating fluid flows. Unlike the conventior
numerical schemes based on discretizations of macroscopic continuum equations, LB
based on microscopic models and mesoscopic kinetic equations. The fundamental ids
the LBM s to construct simplified kinetic models that incorporate the essential physics of
microscopic or mesoscopic processes so that the macroscopic-averaged properties ob
desired macroscopic equations; see the recent review article by Chen and Doolen |
The LBM has been adapted to simulate the motion of solid particles in a Newtonian flu
Most of the work in this area was done by Ladd [46—48], Behrend [5], Atuad. [1, 2],
and Qi [59]. Their schemes are based on a fully explicit scheme, where the hydrodyna
forces and moments acting on solid particles are first calculated from lattice Boltzme
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simulation, and the motion of the solid particles is then determined from these forces
moments using Newton’s second law. The LBM simulations can be easily performed
parallel computers. The computational cost for simulating particle motion scales lineg
with the number of the particles. Using the lattice Boltzmann technique, Ladd [48] simulat
up to 32,000 three-dimensional spheres suspended in a fluid.

The four numerical techniques mentioned above are not the only ones available
direct numerical simulations of multiphase flows at finite particle Reynolds numbers. F
example, the front-tracking/finite-difference method developed by Tryggvason’s grouf
very powerful in simulating the motion of a large number of deformable drops and bubb
(see, for example, Esmaeeli and Tryggvason [14]).

Since the initial publication of Het al. [30], the ALE particle mover has undergone
continuous modifications. Some of them were documented in Hu [28]. In this paper,
will present the most up-to-date implementation of the method and the results of sev
benchmark test problems. The governing equations describing the motion of both the f
and the solid are laid down in Section 2. A simple fully explicit scheme is presented
Section 3 and its stability is also discussed. Section 4 derives the combined formula
for the fluid—solid system. An ALE mesh movement scheme is presented in Sectior
The temporal discretization using a second-order finite-difference scheme and the sp
discretization using a finite-element scheme of the governing equations are describe
Sections 6 and 7, respectively. The topics of automatic finite-element mesh genera
and remeshing criteria are discussed in Section 8. Two schemes of flow field project
from one mesh onto another mesh are described in Section 9. The Section 10 outline:
procedure for the explicit-implicit solution scheme for fluid—solid systems. The models
particle collision are then discussed in Section 11. Finally, the results of five benchm
test problems are presented and compared with ones from the literature.

2. GOVERNING EQUATIONS

In a system of solid rigid particles suspended in a fluid, the motion of the fluid and tt
of the solid particles are fully coupled. The motion of the particles is determined by t
hydrodynamic forces and torques imposed on them by the surrounding fluid. However,
fluid motion is strongly influenced or sometimes even driven by the particle motion—f
example, in the case of sedimentation. In direct numerical simulations, we want to calcu
the motion of both the fluid and the individual solid particles, without using empirice
correlations for the hydrodynamic forces acting on the particles. In most applications,
Reynolds number of the flow based on the particle size is usually not small; thus the iner
of the fluid and the solid have to be included in the model. In this section, we shall lay do
the governing equations describing the motion of both the fluid and the solid.

We shall consider the motion i rigid solid objects (particles) in an incompressible
fluid. DenoteQy(t) as the domain occupied by the fluid at a given time indtanf0, T], and
denote®; (t) as the domain occupied by théh particle(i = 1, 2, ..., N). The boundaries
of Qq(t) andQ; (t) are denoted a&Qq(t) andaQ; (t), respectively.

The governing equations for the fluid motionSy(t) are the conservation of mass,

V.u=0, 1)
and the conservation of momentum,

Du
Pfa=ﬂff+v'07 (2)
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whereu is the velocity vectorys is the density of the fluidf is the body force per unit
mass, which could be the gravitational acceleration; the material derivative of the veloc
is given by

Du du

— = — u-vu; 3

ot = TUY 3
ando is the stress tensor. For a Newtonian fluid, the stress tensor is given by the sin
constitutive relation

o =—pl+2yD[u] and D[u] = %[Vu +(Vu'], (4)

with p being the pressure amdbeing the fluid viscosity. For a viscoelastic fluid, the stres:
tensor may be expressed as

o = —pl + 2nD[u] + 7o, (5)

wherer, is the “polymer contribution” to the stress and may be governed by a constituti
equation such as an Oldroyd-B fluid model [6],

D
A(Frtp —vu'- Tp—Tp- Vu> + 1 = 2n1D[u]. (6)

The parameten is the fluid relaxation timey = n1 + n2 is the fluid viscosity. The
Newtonian fluid can be considered a special case wits n andt, = 0. In general, the
viscosity and relaxation time of the fluid are functions of the local shear rate of the flow; 1
example, viscosity laws such as Bird—Carreau, power-law, Bingham, and Herschel-Bull
may apply.

The rigid particles satisfy Newton’s second law for the translational motion,

dV; '
dt 3% (1)

and the Euler equations for the rotation,

d dwi
Lo =12 o x o =T = — / X-X)x (@ mdS  (8)
dt dt Jaoi )

where the index (=1, 2, ..., N) represents different solid particlas; is the mass, and

is the moment of inertia matrix of théh particle;V; andw; are the translational and angular
velocities of the particle, respectivel@; is the body force exerted by external fields such
as the gravity; and the hydrodynamic foreand momenfl; acting on the particle are
obtained by integrating the fluid stress over the particle surface, as noted in (7) and (8), \
n being the unit normal vector on the surface of the particle pointing into the particle. T
centroid,X;, and the orientation (for example, the three Euler angles)pf the particle
are updated according to

dX;

TS =V, )
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and
do;
d—t' = w;, (10)
respectively.
The boundary of the fluid domaiR2s(t) can be decomposed into three nonoverlapping
sections:(dQ2)y, (92),, andUd ;. On these boundary sections three types of bounda
conditions are imposed,

U=ug  on(EY, (11)
o-n=0, on (092), (12)
u=Vi+aw x (X=X, forxe i, (13)

whereuy is the prescribed velocity. Expression (13) represents the no-slip condition on
particle surface. The boundary conditions for the elastic stress are normally imposed or
inflow boundary(dQ2)in,

Tp = Tin, on (9L2)in (14)

where the stress,, is prescribed.
The initial conditions for the flow field and the particle variables are

u=ug and tp= 1o, in Qq(0), (15)
and
Xi(0)=X?, @) =0° V0=V and w0 =w’ fori=12...,N,
(16)

where the initial velocityup, should be divergence-free.

3. FULLY EXPLICIT SCHEME AND ITS STABILITY

A simple approach to numerically simulating fluid—particle motion is to decouple tt
motion of the fluid and solid at each time step. A fully explicit scheme is described belo

ScHEME 1. Fully Explicit Scheme.

Initialization: tg = 0, n = 0 (index for time step).
Initialize u(x, tg) andV; (tg), wj (to) fori = 1,2, ..., N.
Don=1,2,..., M (total number of time steps)

Select time stepht,: t, = th_1 + At,.

Using the particle velocitie¥; (t,_1) and wj(t,_1) as the boundary conditions,
solve for the flow field u(x,t,) and p(x,t,) by a numerical method
(traditional CFD).

Using the flow fieldu(x, t,) and p(x, t,), calculate the hydrodynamic forcEg(t,)
and momentd; (t,) acting on the particles.

Using the forced-; (t,) and momentd; (t,), update the particle velocitieg; (t,)
andw; (tp).

Using the particle velocitie¥; (t,) andw; (1), update particle positions and orien-
tationsX; (t,) and®; (t,).

End Do
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The above scheme is fully explicit as the particle positions and velocities are explici
updated at each time step. The scheme is simple and easy to implement. Unfortunatel
scheme could be unstable under certain circumstances (seeaH{B0]). Let us consider
the initial stage of the motion of a particle accelerating from rest in an infinite medium
quiescent fluid. In the early stages of the motion, the particle velocity is very small, with t
drag on the particle being mainly from the virtual (or added) mass force, which is causec
the acceleration of the mass of the fluid surrounding the particle. The translational mo
of the patrticle takes the form

m:l—\tlzGJrF%G—m\,?j—\:, a7
whereG is a constant driving force such as the weight of the particiethe hydrodynamic
drag acting on the particle (mainly due to the virtual mass force in this situatiois)the
mass of the particle, armd, is the virtual mass of the fluid. Using the fully explicit scheme
described above, we can calculate the hydrodynamic force acting on the particle base
the particle velocity in the previous time step, and (17) can be written as

dVv dv
ma(tn) =G - mva(tn—l), (18)
or
M= -y
dt'™” " m mdt "t
_G._ m g_ﬂdv( )
“m m|m mdt "?
G my, my \ 2 m,\ "2 m,\"dVv
2 (M _v e (™ L N "
alt () (CR) o (CR) [ (ER) @ w
1—(=m)" m,\"dV
=+ m/ —— | —(tp). 1
m-+m, G+( m) ar (19)

Obviously, as computation proceeds, the particle velocity oscillates with increasingly la
amplitudes when the added mass of the fluid is larger than the mass of the paxticien.
Therefore, this scheme is not stable. The actual value of the virtual masdepends on
the particle shape and the flow geometry. For a spherical particle in an infinite medium,
virtual mass is equal to one-half the mass of the fluid displaced by the particle. Howe
if the same sphere is moving through a tightly fitted tube, the value of the virtual mas:
much higher, since the sphere needs to accelerate more fluid both ahead and behin
sphere. Therefore, the conditiom, > m could be true for certain fluid—particle systems,
for example, those involving the motion of light particles in a fluid or the motion of particle
in some confined geometries.

To avoid the stability problem of the fully explicit scheme, a coupled scheme for solvi
the flow field and particle velocities in a given time step is needed. For example, the solut
of the flow field and the forces and moments acting on the particles could be determi
iteratively with the velocities of the particles at the same time instant (an implicit schem
or a predictor—corrector scheme could be used to update the particle velocity. However,
can treat the fluid and the solid particles as one system and generate a combined formul
for this system.
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4. COMBINED FLUID-SOLID FORMULATION

In fluid—particle systems, owing to the complex, irregular nature of the domain occ
pied by the fluid, finite-element techniques are particularly powerful for discretizing tt
governing fluid equations. In order to use the finite-element method, we first seek a wi
formulation that incorporates both the fluid and particle equations of motion, Egs. (2), (
and (8).

Let us introduce the function spa¥e given by

U=(u,Vi,...,VN,w1,...,a)N) | ue Hl(Qo)a,Vi eﬂi?’,wi ei)’t?’,
U =Vi+o x (X—Xj)ona;(t),andu =ugon @), fori =1,2,...,N [’

(20)

where H1(0)® corresponds to the space for the 3-D velocity field in the fluid, &Ad
stands for the space for the particle velocities (three translational and three angular velc
components per particle). The spacés a natural space for the velocity of the fluid—solid
mixture. The space for the pressure is choseh%8) with a zero value at a fixed point
in the domain and is denoted as

Q(Q0) = {p | p € L3(Q0), p(xo) = 0}. (21)

Similarly, the space for the elastic polymer stress tensor is selectedLi&(£g)®, which
represents six independent components, and is denoted as

T={r|1elL%Q)° 1 =1n0n0Rin}. (22)

To derive the weak formulation of the combined fluid and particle equations of motio
we consider a test function (the variationld,

0=(ﬁ,\71,...,\7N,67)1,...,67)N)EVo, (23)

where the variational spadg is the same a¥, except thatt = 0 on(92),. We shall define
the variational spac®, to be the same &8, except that = 0 on (9€2)i,. Multiplying (2)

by the test function for the fluid velocityi, and integrating over the fluid domain at a time
instantt, we have

/pf<D”—f>-adsz+ ‘(GZVINJ)dQ— > (0-n)-GdS=0. (24)
J Qo Q0

Dt 1<i<N 3

The test function for the fluid velocity on the particle surface will be replaced with the te
functions of the particle velocities according to the no-slip condition (13). Furthermor
using the equations of motion for the particles (7) and (8), we obtain

- (0-n)0d5=—/ (@-m-[Vi+a& x (x—X)]dS
0% 0

= -V - (o~n)dS—c5i~/ (X —Xi) x (6 -n)dS
082 0%

o (e dVvi -~ ddiwi)
— Vi <m. o G.>+w. . (25)
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Substituting (25) into (24), we find the combined fluid—particle momentum equation

Du . . ~ dv;
— —f).0dQ : D[] dS2 § Vi [(m— —G;
/Qopf(Dt ) td +/Qoa [0]dQ + i (m. at G.)

1<i<N
. ddiw)
IR

1<i<N

=0. (26)

The stress tensor in (26) can be replaced with (5). The weak formulations for the mass
servation (1) and the constitutive equation (6) can also be similarly obtained by multiplyi
their corresponding test functions and integrating over the fluid domain.

In summary, the weak formulation for the combined equations of the fluid—patrticle syst
is as follows:

Find (U, p, 7p) € V x Q x T, such that

/pf(Du—f)-ﬂdQ—i—Z/ n,D[u] : D[d] d$2 — p(v-u)dsz+/ % : D[] d22
Q% Dt Q% Q0

Qo
~ Vi . d(liw) ~
+ ZVy(miW—Gi)—i-Zwi' T =0 YU € Vg (27)
1<i<N 1<i<N
pv.-udQ =0 VpeQ (28)
Qo

o Dz T =

Ql’. A E—Vu “Tp—Tp- VU | + 15— 2nD[u] | d2 =0 VT € To. (29)

It is noted that in the combined momentum equation (27) for the fluid—particle syste
the hydrodynamic forces and moments acting on the particles do not explicitly appea
the formulation. This fact comes out naturally, since these forces are internal when
fluid and the solid particles are considered as one system. The advantage of this comt
formulation is that the hydrodynamic forces and moments need not be explicitly comput
More importantly, the scheme based on this formulation is not subject to the numeri
instability which can arise when the equations of fluid and particle motion are integra
with explicitly computed hydrodynamic forces and moments, as discussed in the previ
section.

5. ARBITRARY LAGRANGIAN-EULERIAN (ALE) MESH MOVEMENT

Aswe are expecting alarge number of solid particles moving freely in the fluid, the dom:
occupied by the fluid is irregular and changes with time. To handle the movement of
domain, an arbitrary Lagrangian—Eulerian (ALE) technique can be used. In this sect
we describe this technique and discuss the methods for controlling the mesh movemel
general kinematic theory for the ALE technique was originally introduced by Hugtteds
[37].

In an ALE formulation, the material time derivative (3) of the velocity at a given point
in the fluid domain and at a time instanis written as

su

D .
au(x,t) = E+[(u—u)-v]u, (30)
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where

8 0
gU(X,t) = ﬁu(X(X1t)vt)|XfiXed (31)

is the referential time derivative keeping the coordinatesn the referential domain con-
stant. The functiox(y, t) can be viewed as a mapping from the fixed referential domain t
the spatial domaifg(t) where the fluid mechanics problem is posed. The veldity t)

is the velocity of the domain (or the mesh velocity) and is defined as

d R
ax(x, t) =10. (32)

When the referential domain coincides with the spatial domain at the currenjtise,
we havell = 0, and the referential time derivative (31) reduces to the local Eulerian tin
derivative. When the mesh velocity coincides with the velocity of the material pariicies,

u, the referential time derivative (31) recovers the Lagrangian (or material) time derivati

In general, the domain (or mesh) velocity in (32) is only constrained at the boundary
the domain. It has to follow the motion of the particles and the motion of the confining flc
geometry. In the interior of the domain, the mesh velocity is largely arbitrary.

Ifthe deformation of the domainis prescribed, or somewhat predictable, the mesh velo
in the interior can be expressed simply as algebraic functions of the motion of the node
the boundary, such as the ones used in Huerta and Liu [35] and Nomura and Hughes |

For more complicated motion of particles in a fluid, the mesh motion in the interior
the fluid can be assumed to satisfy an elliptic partial differential equation, such as Lapla
equation, to guarantee its smooth variation,

V-(kVO) =0  inQo(t), (33)

wherek® is a function introduced to control the deformation of the domain such that tt
region away from the particles absorbs most of the deformation, while the region next to
particles is relatively stiff and retains its shape better. Here, we cHédsebe the inverse
of the local element volume. This mesh movement scheme was used by Hu [28]. It shc
be noted that the components of the mesh veldtire not coupled and can be solved
separately. The boundary conditions that the mesh velocity must satisfy are

0=V +w x X=X, forx e a(t),i=12,...,N (34)
and
=0 on(0R2)y U (02),. (35)

It is possible to use different boundary conditions for certain flow problems. With circul
or spherical particles, the mesh velocity can be allowed to slip on the particle surface; t
the nodes on a particle surface move with the particle with its translational velocity but
not need to rotate with the particle.

Similarly, if the particles undergo acceleration, an acceleration fétdt), of the domain
can be defined as

V.(kVa) =0  inQo(t) (36)
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with the boundary conditions given by
a=Vi+a x X=Xi)—w xV;j, forxedt),i=12..N (37)
and
a=0  on(dQ),U (0NQ),, (38)

whereV; = dV; /dt andw; = dwj /dt. This mesh acceleration field is useful when a highe
order scheme is needed to discretize Eq. (32) for the mesh movement.

A similar mesh movement scheme was described by Johnson [40]. In his implementat
the domain is modeled as a linear elastic solid, and thus the equations of linear elast
were used to solve for the mesh velocity in the interior of the domain based on the gi
boundary deformation. Thus the components of the mesh velocity are coupled in the sch
and have to be solved together. Johnson [40] also used a variable stiffness coefficie
control the mesh deformation so that most of the mesh deformation is absorbed by the I
elements in the mesh and the small elements are stiffer and retain their shape better.

The weak formulations for the equations of the mesh velocity (33) and the mesh ac
eration (36) can be written as

Find( € Viesh1anda € Vineshz such that

(keVQ - VG) dQ@ =0 vl e Vmesho (39)
Qo

and

(k°va- Vz:a) de=0 Vae Vimesho (40)
Qo

where the function spaces are defined as

Vmesh1= {0 € HY(Q0)% 0 = Vi + @i x (X —X;) ondi; 0 = 00n(dQ), U (3Q),},

(41)
Vimesh2= {a € HY(Q20)% 8=V, + & x (X = X;j) —w; x V; ondy;
a=00n(dQ), U (0Q),}. (42)
and
Vimesho= {0 € H}(€20)3: 0 = 0 0n90)}. (43)

6. TEMPORAL DISCRETIZATION—FINITE-DIFFERENCE SCHEME

Owing to the special nature of the temporal coordinate, the time derivatives in the sys|
of equations are usually discretized by simpler finite-difference methods. In this section,
introduce a finite-difference scheme to replace the time derivatives in the combined flu
particle system of (27)—(29). We shall consider all the terms in the equations (27)—(29
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a given instant = t, 1 (fully implicit discretization). First, the referential time derivative
in (31) can be discretized as

su u(X, thy1) — u(x, tp) Su _
(X, thyn) A —B— (Xt 44
(St (Xv n+l) o At 13 (St (Xv n)» ( )

where At =t 1 —t is the time step, and the mesh nodes are moved according to
integrated version of (32),

. . At?
X =X+ U(X, ty) At + a(x, tn)7. (45)

The approximation in (44) is first-order accurate in time when=(1, 8 = 0). It can be
improved to second-order accurate in time by selecting 2, 8 = 1), which is a variation
of the well-known Crank—Nicolson scheme.

Therefore, the material time derivative (30) can be written as

Du U(X, thy) — U(X, ty) Su _
a(xv tn+l) ~ o At - ﬂﬁ(xa tn)
+[(U(X, thy1) — (X, thya)) - VIUCX, thya). (46)

Similarly, the time derivatives of the particle velocities in (7) and (8) can be discretiz
as

d., . Vil Vit d_
avl (thy1) =~ (XT - ,Bavl (th) (47)
and
d _(io)(ths1) — (liwi)(th) d
m('la)l)(tn+l) ~o At - ﬂa(lla)l)(tn)- (48)

However, the equations for the particle positions and orientations (9) and (10) are upd:
using an explicit finite-difference scheme,

2
Xi(th+1) = Xi(ta) + AtVi(tn) + %Vi (tn) (49)
and
2
Oj (th+1) = Oj(th) + Atw;(ty) + %d)i (th). (50)

As mentioned above, in the weak formulations of (27), (28), and (29), the spatial dom.
and all the functions in the integrals are evaluated at a given time iristait, ; or frozen
at this time instant. The time derivatives in (27) and (29) are kept inside the integral and
replaced by expressions such as (46), which gives

/ ,Of<au+(u—0)-Vu> -GdS2~|—2/ noD[u] : D[] dQ — p(V - 1) dQ
o At % %
. o 5 o
:D[0] dQ + — V-V — I wi) - &
+ »/Qo Tp [U] + At lSiZSN m; Vi i + At 1;[\‘( i) - Wi
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=/ <Eu(xtn)+,3 (xtn)+f>~ﬁd§2

+ > (Atm.V(tn)+ﬂm|dV(tn)+G>-\7i
+ Z( (i) () + B (I.w.)(tn>> (51)

and

Q0

_ Tp
= /QO)\(At Tp(X, tn) +ﬂ (x tn)> de. (52)

Since the domain of integration and all the functions in the integrals, unless specif
otherwise, are all evaluated at the current time instant the temporal discretization in
(51) and (52) is fully implicit and unconditionally stable. The functions inside the integra
on the right-hand sides of (51) and (52) are known (they are the computed solution of
previous time step). Although the domain on which these functions are defined, which is
old domainQ" = Qq(t,), is not the same as the domain of the integration, which is the ne
domainQ™t! = Qo(t,11), the integration can be perceived as the integration over the fixe
referential domain. The location of the grid in the new domajrand its correspondence
in the old domainy, is the same in the referential domain. Expression (45) provides
mapping between the old and the new domains.

One should be careful in using (45) to update the nodes on a particle surface, espec
using the first-order scheme. If one simply uses the velocity due to the rigid-body moti
the body shape will become more and more distorted, as depicted in Fig. 1 for the ¢
of a rotating rectangular particle. The numerically updated position of its corner A will |
located at A instead of the desired positior,Aafter the particle rotates 90T his is purely
a numerical artifact. To keep the shape of the rigid body during the simulation, the no
on the particle surface should be simply reset to the surface at each time step.

FIG. 1. Distortion of the particle shape due to the improper update of the nodes on the particle surface.
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7. SPATIAL DISCRETIZATION—GALERKIN FINITE-ELEMENT SCHEME

In general, the spatial discretization of a partial differential equation can be accomplist
by a number of numerical methods. However, in our fluid—particle systems, because of
complex, irregular nature of the domain occupied by the fluid, finite-element methods |
particularly attractive. Inthis section, we discuss the approximation of the weak formulatic
of (28), (51), and (52) by a Galerkin finite-element formulation and the proper choices
the interpolation functions for the fluid velocity, pressure, and stress.

The fluid domaing is first approximated by a finite-element triangulatityy whereh
is the typical mesh size. To fit the surface of the particles, curved P2 quadratic elements
more appropriate. For two-dimensional problems, these elements are triangles with 6 b
functions that are second-order polynomials defined on 3 vertices and 3 mid-nodes on
side of the triangle, as shown in Fig. 2. For three-dimensional problems, these element:
tetrahedrons with 10 basis functions that are second-order polynomials defined on 4 ver
and 6 mid-nodes on each edge of the tetrahedron. The curved quadratic line segrr
in these elements approximate the local surface curvature of the particle, as indicate
Fig. 2.

Subsequently, the function spac&s,Q, T, are approximated by their corresponding
finite-dimensional counterparts defined on the triangulalignin this particular imple-
mentation, we use a mixed type of finite-element, where different interpolation functio
are chosen for the different unknown variables. The discrete solution for the fluid velocity
approximated by piecewise quadratic functions and is assumed to be continuous all ove
domain (P2). Thus in a finite-element, the velocity is locally interpolated with its values
all 6 nodes in two dimensions or 10 nodes in three dimensions. The discrete solution for
pressure is piecewise linear and continuous (P1). The discrete solution for the compon
of the stress tensor is also piecewise linear and continuous (P1). In a finite-element, |
are locally interpolated only with their values on the vertices. This P1/P2 element for t
pressure and velocity is known to satisfy the LBB condition.

One of the advantages of choosing this type of mixed finite-element is that it reduces
cost of mesh generation in comparison with that for the finite-element method using eq
order (linear) interpolation functions for both the velocity and the pressure. For a giv
desired accuracy of the numerical solution, a coarser mesh with fewer elements woul
needed with quadratic velocity interpolation (P2 element) than with linear interpolatic
function (P1 element). Such cost savings could be considerable for simulations of la

FIG.2. Curved 6-node triangle and 10-node tetrahedron. The curved line/surface is next to the particle surf
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numbers of particles where the total number of elements is large and the frequency \
which the mesh is regenerated (to be discussed in the next section) is also high.

There is another advantage of using the P2 element for the velocity field: When t
particles are approaching each other or are moving with respect to the other, in the lubrice
limit the velocity profile across the gap between the particles is parabolic. Therefore,
P2 element will capture the exact solution in the region between two particles near cont
even with only a single layer of elements. With the linear P1 elements, a single elem
across the gap between two particles near contact would create mesh locking and the fe
of the numerical scheme. In such a situation, a few layers of elements are needed ir
gap region between two moving particles, and a special finite-element mesh generat
needed to guarantee that [43].

On a given finite-element mesh and with the finite-element interpolation functions chot
above, the weak formulations (28), (51), and (52) would reduce to a nonlinear systen
algebraic equations. This nonlinear system can be solved by a Newton—Raphson algori
In each step of the Newton—Raphson iteration, one solves a linear system of the form

Al A2 Gl Bl U fU
As; A G B u f
3 — u ’ (53)
Qi Q D O T f,
Bl Br 0 O p f,

where all submatrices in the system are sparse. In general, the system is not syruhigtric
the vector combining all the translational and angular velocities of the solid partigtes;
andp represent, respectively, the vectors collecting all the fluid velocity, stress, and pres:
unknowns at grid points in the fluid. In (53) the fluid velocity unknowns on the particl
surface are eliminated with the particle velocities using the relationship for the rigid-bo
motion. The vector on the right-hand side of (53) is the discretized form of the residual
the system for a given trial flow field during the nonlinear iteration.

The weak formulations for the mesh velocity (39) and the mesh acceleration (40) can
be approximated on the finite-dimensional function spaces based on the linear polynon
(P1 element). The final linear systems of algebraic equations are

HO = fmn (54)
and
Ha=fmn, (55)

whereH is symmetric and positive definite. In (54) and (Sbandarepresent, respectively,
the vectors collecting allthe mesh velocity and the mesh acceleration unknowns at grid pc
in the fluid. The vectors on the right-hand side of (54) and (55) are due to the bound
conditions on the surface of the particles.

The algebraic systems (53) and (54) are coupled since the ndainix53) depends on
the mesh velocity fiel@. Thus, (53) and (54) need to be solved iteratively at each time ste

The linear system of algebraic equations (53) can be solved with an iterative solver uc
a preconditioned generalized minimal residual (GMRES) scheme or biconjugate grad
stabilized algorithm (BICGSTAB) (see Saad [60]). These schemes are suitable for
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nonsymmetric matrix in the system (53). In simulations with a GMRES scheme, we
the size of the Krylov subspace to around 20 for good convergence. To make the iters
solver converge, use of a proper preconditioner is essential. The preconditioners, suc
ILU(O) or ILU(t) (incomplete LU factorization without or with controlled fill-ins), when
applied to the global system, are found to be quite robust and efficient. For more effici
implementations, one may take the advantage of the structure of the system in (53),
design different preconditioners for different parts of the equations within the system. T
design of more efficient and reliable preconditioners, especially for parallel computatic
is still the topic of active research [49, 60, 63].

The symmetric and positive definite systems of (54) and (55) can be solved iterativ
with the conjugate gradient method. A preconditioner such as ILU(0) can be used to impr
the convergence.

8. MESH GENERATION

In simulations of fluid—particle systems, complicated interactions of particles make t
geometry of the domain occupied by the fluid complex and irregular. We therefore cho
to use unstructured finite-element grids (meshes) to cover the computational domain.

The first task in simulating the motion of a fluid—particle system is to generate a finit
element grid based on the initial positions of the particles in the domain. We developec
automatic mesh generator for this purpose. The mesh generator first creates a uniform
on all the particle surfaces and boundary sections. It then checks the distance betwee
boundary nodes belonging to different particles or boundary sections. If the distance is
than a certain value, for example, the gap between two corresponding particles, the n
generator performs a refinement by inserting nodes locally. The purpose of this bounc
grid refinement is to eventually generate a fine mesh in the regions where it is needed. \
the complete boundary grid information, the mesh generator next generates the elen
in the interior of the domain using the Delaunay—Voronoi methods (see, George [22]). (
3D-volume mesh generator is built around the package GHS3D developed by George
Hecht in INRIA. Finally, the middle nodes are added on the edges of the mesh to fo
P2/P1 mixed elements used in our finite-element scheme.

In computing solid—liquid flows with a large number of solid particles, itis often necessa
to use periodic boundary conditions in one or more directions. At the periodic boundari
the particles frequently leave and enter the computation domain. The finite-element m
generator described above automatically takes care of the periodic boundaries without ir
ducing artificial cuts on these boundaries. The artificial cuts on the periodic boundaries r
give rise to very unsatisfactory elements. Techniques for periodic finite-element mesh ¢
eration are discussed by Patankar and Hu [56], Johnson and Tezduyar [43], and Maury [

The mesh generator has a local refinement capability in regions formed by approact
particles or between a particle and the surrounding wall, as mentioned earlier. Ther
always at least one layer of elements in those regions, and the mesh size in those regic
designed to be of the order of the minimum gap size between the approaching particles.
local refinement in the gaps between particles is essential to capture the “particle collisi
process that is to be discussed in Section 11.

Examples of finite-element meshes are presented in Figs. 3 and 4. Figure 3 displa
2-D mesh with 100 circular disks in a periodic domain between two channel walls. In t
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FIG. 3. Two-dimensional finite-element mesh in a channel flow with 100 circular disks.

figure, straight lines are used to connect three vertices of a triangle. However, the curve
triangles (with 6 nodes) are actually used in the simulation to fit the curved particle surfac
Figure 4 shows the meshes on the surfaces of two spheres and on the surface of a cit

tube.

FIG. 4. Surface meshes on the two spheres and the cylindrical tube used in the study of sedimentatic

spheres. The mesh is refined in the region of close contact.
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During a typical simulation, we start the calculation by generating a finite-element me
with the automatic mesh generator based on the initial particle positions in the dom:
Using this mesh, we can generate and then solve the system of algebraic equations
(54). At the new time step, the old finite-element mesh will be moved using (45) accordi
to the mesh velocity and mesh acceleration field obtained from the previous time step.
updated mesh is checked for the quality of its elements. If unacceptable element distor
is detected, a new finite-element mesh will be generated with the automatic mesh gener
The new mesh may not have any correspondence with the old mesh. The solution frorr
old mesh hasto be projected onto the new mesh. Once the solution is projected, computa
can proceed normally.

The quality of the mesh can be measured by checking the change in the element vol
(and/or aspect ratio) in comparison with its value in the initial undeformed mesh. T
changes of the element volume and aspect ratio are defined as

ff = |log(V¢/Vs)| and f5 =|log(S*/S)

: (56)

whereV ¢ andVj are the volume of theth element and its value in the initial undeformed
mesh, respectively&® and S are the aspect ratio of the element and its value in the initie
undeformed mesh, respectively. The aspect ratio is defined as

e\3
s ('V) , 57)

wherel€ is the maximum length of the sides of the elemenThe global quality of the
mesh is measured by the maximum mesh deformation,

fi= max (ff) and f,= max (f5), 58

! 1se§Ne|( 1) 2 lsesNe|< 2) ( )
where Ng is the total number of elements in the mesh. Usually, remeshing is conside!
when either one of these two parameters exceeds 1.39, which corresponds to the situ
where element volume (or aspect ratio) is larger than four times or smaller tAasf its
original value.

9. PROJECTION SCHEME

At each time step, we explicitly update the particle positions and move the finite-elem:
mesh using Egs. (49), (50), and (45), based on the solution at the previous time step. I
updated mesh is too distorted we need to generate a new mesh, as described in the pre
section. We then need to project the flow field defined on the old mesh onto the new m
to continue the simulation. Projection errors will be introduced during the process and n
to be minimized. There are a number of schemes to perform this projection. Two of th
will be discussed in this section.

Let us assume that at the time step t,, 1, the mesh nodes moved fronto x according
to Eq. (45). Supposing that the updated mesh is found to be too distorted, a new imesh
generated. The meshgsandx cover the same domain occupied by the fluid at t,;.
Since we have calculated the flow field at the previous step, all the flow properties
known. Let us consider one of the flow propertieéx, t,). The objective of the projection
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scheme is to find the value of the same flow propefty, t,) on a different mesk that is
traced back from the new megtaccording to

L L At?
y =y + 0y, th) At + &y, tn>7. (59)

Since we do not have the velocifiyand the acceleratioh on the mesly, calculating the
direct projection fromp (X, tn) to ¢’(y, t,) is difficult. However, since the mappingto x
given by (45) is affine, the projection can be performed from the meshthe mesty,
namely, the projection from(X(X), tn) = @(X, ty) to @’ (Y(Y), tn) = @' (Y, tn). Another way
to view this is to define the projection on the referential domain.

The first scheme is a direct local interpolation scheme. The local interpolation functic
could be linear or quadratic depending on the functions being interpolated and the typ
elements being used. To find the flow field information at each node in the new mesh, tt
steps are required. In the first step, one needs to locate the element in the old mesh v
a given new node lies. An example of a search in a two-dimensional problem is depic
in Fig. 5. The search is based on evaluating the local (area) coordinates with respect t
element in the old mesh,

_ (X = X1) (Y3 — Y1) — (X3 — Xp)(Y — Y1)
(X2 — X1) (Y3 — Y1) — (X3 — X0) (Y2 — Y1)

_ (X2 = X)) (Y — Y1) — (X = X)) (Y2 — Y1)
(X2 — X1)(Y3 — Y1) — (Xa — X1) (Y2 — Y1)

(60)

wherey = (X, y) is the coordinates of the given node in the new meghs (Xa, Ya) (@ =
1, 2, 3) are the coordinates of the three vertices of the elera@mtcountered during the

at

(xy)

el

FIG. 5. Diagram of a search scheme to find the element where a given@oiyt lies. The search starts in
the elemeng;. The arrow lines indicate the steps in the search process.
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FIG. 6. The search proceeds to the next elenggiitr < 0, ore; if s < 0, ore;if1 —r —s < 0.

search (in the updated mesh If the local coordinates calculated from (60) satisfy
0<r=<1 0<s=<1 and 0O<l-r-s<l, (61)

then the nodéx, y) belongs to this elemest Otherwise, the values of the local coordinates
and the information on element neighbors are used to proceed the search for the next elet
using the general rules indicated in Fig. 6. These rules are modified next to bounda
or particle surfaces, where the search takes whatever path that is available. If a se
encounters a dead end, it backtracks to the previous possible bifurcation point and sele
different path. This search scheme is able to get around particles in the domain and ca
easily extended to three dimensions.

The second step in this interpolation scheme is to calculate the exact local coordin:
for the node within the found element. During the search step, the elements are assu
to be linear (with straight sides). However, they may be curved. For curved high-orc
elements, the calculation for the local coordinates involves solving a set of nonline
equations,

X = Z XaNa(r, s), (62)

1<a<Nyg

whereNq is the total number of nodes in the element apdndN,(r, s) are the coordinates
of the nodes and the corresponding interpolation functions in the element, respectively

Once the local coordinatgs, s) for the new node are obtained, the interpolation of &
variable at this node can be easily achieved by using the local interpolation functions
the nodal values of the variable on the located element, that is,

GVt = Y ¢(a t)Na(r,9). (63)

1<a<Nyg

One can estimate the numerical error produced in this type of projection. A simj
analysis (see Patankar [55]) shows that the projection error is of btderlinear elements
and is of ordeh?® for quadratic elements, whehds the mesh size.

The second projection scheme uses a global least-squares method. With the not:
described atthe beginning of this section, the projection is done by minimizing the differer
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between the function representations on the old mesh and on the new mesh, or
vinimize [ 5y, 1) - 5x W2 d2) (64)
Qo(tn+1)

where the integration is performed over the new mesh. The weak formulation of (64)
be written as

Giveng(x, tn), find ¢’(y, t,) such that

/ @'Y, t)@(y) dQ(y) = / (X, th)@(y) d2(y)
Qo(th+1)

Qo(tn41)

= / e(X, t)@(y)d2(y)  forvg(y), (65)
Qo(tht1)

where¢’(y, tn) andg(y) belong to the appropriate function spaces for the flow variable
The integration on the right-hand side of (65) can be performed numerically, where
values ofp(x, t,) at Gaussian quadrature points are needed. These values are calcul
using the local interpolation scheme described above. Once the function is approxim:
by the finite-dimensional finite-element space, (65) reduces to a set of linear algeb
equations and can be solved by iterative methods such as the conjugate gradient mett

The global least-squares projection scheme generally performs better than the local i
polation scheme. This may be due to the fact that the right-hand side of (65) is the sam
the terms on the right-hand side of (51) and (52). If the right-hand side of (65) is evalua
exactly, the global least-squares projection scheme would be exact. Thus the projec
would not introduce any additional error, or is said to be consistent.

10. EXPLICIT-IMPLICIT SOLUTION PROCEDURE

So far we have described all the major steps needed for simulations of fluid—solid syste
In this section, we summarize these steps and present a solution procedure for fluid—
systems. This procedure is termed explicit—implicit; the particle positions and the m:
nodes in the fluid domain are updated explicitly, while the particle velocities and the flt
flow field are determined implicitly.

SCcHEME 2.  Explicit-Implicit Scheme.

Initialization:to = 0, n = 0 (index for time step).
Generate initial mesky based on particle positions and orientatioxg0),

Qi (0).
Initialize u(x, to) andV; (tp), wj (tp) fori =1,2...., N.
Don=1,2, ..., M (total number of time steps)

1. Select time stepty ity = th_1 + Aty.
2. Update particle positions:

Xi (tn) = Xi (tn-1) + Vi (th-1) Atn + Vi (ti1) (At1)?/2,

O (tn) = O (tn—1) + i (tn—1) Aty + @i (tr_1) (Aty)?/2.
3. Update mesh nodes:

Y(th) = X(th-1) + 0(X, th_1) Aty + &(X, th-1) (Aty)2/2.
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4. Check mesh quality; if the updated mesgh,) is too distorted, then

generate a new mestity).
project the flow field frony(t,) ontox(ty,).

5. Iteratively solve for the flow fieldi(x(ty), th), p(X(th), tn), T(X(th), tn), the
mesh velocityli(x(ty), t,), and the particle velocitieg; (tn) andw; (t,).
6. UpdateVi (th), wi (th), 8/8t u(X(ty), tn), 8/8t T(X(tn), tn) from equations such
as (47), (48), and (44).
7. Solve for the mesh acceleratiax(ty), tn).
End Do

The choice of the time steft,, in the scheme depends on many factors. It can be used
restrict the maximum distance each particle is allowed to travel in that time step, to rest
the maximum change in the particle velocity, or to avoid the collisions between the partic
and between the particle and the confining boundary walls. The time step should alst
restricted to capture unsteady dynamic behavior of the fluid motion, such as vortex shed:
in the flow.

This explicit-implicit scheme is second-order accurate in time and numerically stable
was first described in Hat al.[30], and since then it has been used in a number of studie
of fluid—particle systems.

11. PARTICLE COLLISION

Itis not possible to simulate the motion of even a moderately dense suspension of parti
without a strategy to handle cases in which particles touch. In various numerical methc
frequent near collisions force large numbers of mesh points into the narrow gap betw
close particles and the mesh distorts rapidly, requiring an expensive high frequency
remeshing and projection. Different “collision models” were developed to prevent ne
collisions while still conserving mass and momentum. In this section, we discuss some
these models.

It can easily be proved that smooth rigid particles in a Newtonian fluid cannot touch—t
gap between two particles cannot go to zero within a finite time. To have real collisi
of smooth rigid particles, it is necessary for the fluid film between the particles to ruptt
and film rupture requires physics and mathematics beyond the Navier—Stokes equati
Besides, in practical situations, the particles are normally neither perfectly smooth nor ri

The first approach in modeling “particle collision” is to provide a finer zone betwee
the particles as the particles are approaching each other and to use smaller time steps
approach attempts to capture the collision process as exactly as numerically possible wit
introducing any modeling. Local mesh refinement schemes, such as the ones discuss
Section 8, are necessary. Numerical experiments based on local mesh refinements
good stability and robustness properties [28, 30]. The smallest gap size between “colli
particles was allowed to be as small as10mes the particle diameter. Nevertheless, this
approach has the drawback that there is no control of the computational cost.

The nextapproach is to use the solid-body collision model with a coefficient of restitutic
This approach only models the collision process of the solid particles while neglecting
collision process within the fluid. The fluid motion during the particle collision is quite
complicated, experiencing a singularity at the time of the particle contact. The solid-bc
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collision model is only possible when using a fully explicit scheme as described in Sectiol
In this model, at each time step once the total forces on the particles are obtained, the pa
velocities and positions in (7) and (9) are explicitly updated by

At
VT =V o (T ) (66)
and
t
X=X+ S (VT V) (67)
fori =1,2,..., N,whereAt is the time step, an' andF"™ are the total forces acting on

the particle at time stefg andt,. 1, respectively. Using the new positions of the particles
if the particle A is found to overlap particle B, collision occurs between these two particle
For colliding particles A and B, their velocities after the collision need to be modified by

. 1+ems
Vn+1 — Vn+1 v o Vn+l (7 \VAU \VAL 68
A A nA mA+mB( o + Vig) | D (68)
R (1 + e)mA
O = Vg v - vt - I (v vn"Bﬂ . (69)
A + Mp

wheree is the coefficient of restitutioripa = Va - Na, Vg = Vg - N, andny = —ng is
the unit normal vector pointing from the center of particle A to the center of particle B.
deriving (68) and (69) it is assumed that linear momentum of the two particles is conser
and that the tangential forces are zero during the collision process. The velocity correc
due to the collision is applied in an iterative fashion. The new particle positions (67)
updated with these corrected velocities, and other particle collisions are checked agait

Different collision models (for example, the ALE particle mover and the DLM particl
mover) have been developed for the coupled solvers for the fluid and solid systems. Tt
collision models aim to capture the “collision process” for both the solid particles al
the fluid motion by introducing short-range forces as additional body forces acting on:
particles. They all define a security zone around the particle such that when the gap betv
particles is smaller than the security zone a repelling force is activated. A repelling fo
can be thought to represent surface roughness, for example. The repelling force pushe
particles out of the security zone into the region in which fluid forces computed numerice
govern. The different strategies differ in the nature of the repelling forces and how they
computed.

The scheme used by Glowingéi al. [24] introduces a short-range repulsion force be-

tween particles near contact. This force takes an explicit form

b 0, dij >R + Rj +6
=91 2 (70)
' X =XPR+ R +8-dj)7, dj <R +Rj+34,

whered;; is the distance between the centers of particlead j, R is the radius of the
ith particle,s is the force range, ang, is a small positive “stiffness” parameter. A similar
repulsive force is introduced to handle the collision between the particle and wall,
0, dj > 2R +4
X =X @R +8—d))? d) <2R +34.

w

Gl = (71)
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In (71) an imaginary particle of the same size is introduced. It is located symmetrically
the other side of the wall, &; ;. The distancel] is between the particleand its image
with respect to the wall sectiop Another positive “stiffness” parametey; is introduced
to control the magnitude of this force.

Therefore, the extra body force on thih particle, due to the collision with all other
particles and the walls, can be expressed as

Nyl
G = Z Gy +) G (72)
j=1j#i j=1

This collision force is used in the combined momentum equations for the fluid and so
to determine the fluid velocity field and solid velocities. In this collision scheme, the choi
of the “stiffness” parameters, andey, is essential. If the parameters were too large (the
force were too small), the collisions would not be prevented. In contrast, if the paramet
were too small, the repulsive force would be too strong, and the particle would bounce
much during the collision. In general, the optimum values of these two parameters may v
from the test cases. In this collision scheme, there is no control on the minimum dista
between the colliding particles. The particles may still overlap.

Another strategy due to Maury [50] uses the lubrication force to separate touchi
particles and also requires the touching particles to transfer tangential as well as nor
momentum.

In the collision scheme used in the ALE particle mover by Hu [28], the expression of t
repelling force is not specified. The magnitudes of these forces are such that the parti
are forces just to the edge of the security zone. One can imagine that the particles
not smooth, and there is a contact force between the particles when they are approac
within a distance of the size of “particle roughness.” The magnitude of this contact force
iteratively determined by requiring that the particles not overlap and that they be in cont
just at the edge of the contact zone. In this collision model, after the new particle posit
is explicitly updated using

Xi (thr1) = Xi (tn) + Vi (tn) At + Vi (t) At?/2 (73)

in step 2 of the explicit—implicit scheme described in Section 10. The collisions between
particles and between the particle and wall are first detected. If part&cfeund to contact

particle j, then a contact forc@; ; is introduced, which satisfies the relatiGn; = —G;;.
The new positions of the particles are modified according to
A N+ Nyail
Xi(th1) = Xitnen) + 5 ( > G ,) (74)
Mi \ 24

whereN4 is the number of boundary segments. The contact forces on paiticlede all
contributions from the neighboring particles and the boundary segments. For particles
in contactG; ; = 0. The values of all the contact forces are iteratively determined such tt
the new distance between the particles originally in contact equals the size of the secl
zone,

dij = [Xi(try1) — X (tas0)] = R+ Rj +3, (75)

where R are radius of théth particle, and is the thickness of the security zone. The
procedure is applied iteratively, since the new particle positions may create new con
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points. The final values of the contact forces contribute to a “collision” force on ea
particle,

N+ Nyail
G?= ) G, (76)

j=Lj#i
which is introduced as the additional body forces in the calculations of the flow field a
the particle motion.

Maury [51] further developed the idea presented above into a more solid mathemat

framework. The objective of the collision model is to find a modified particle configuratic
set (positions and orientations)

Y = (X1, X2, ..., XN, O1, 0o, ..., Op) € RN (77)
to minimize a functional
w(Y) = (dj(Y) =872 (78)
dij <8

whered;; is the distance between the particiesnd j. The optimum configuration s&t
can be obtained by performing a steepest descent algorithdn(¥n. This strategy was
developed for two-dimensional smooth bodies of arbitrary shape.

It should be noted that the collision strategies that use a security zone to prevent c
contact of the particles tend to keep the particles farther apart than they ought to be, resu
in lower particle volume fractions in the fluid—solid mixture. The size of the security zor
should be kept as small as possible. Itis a balance of the accuracy of the numerical sct
and the computational cost.

12. SAMPLE APPLICATIONS

In this section we present results of some of the direct numerical simulations using
ALE particle mover. Most of the results presented are the works of Patankar [55] and 2
[70].

12.1. Sedimentation of a Single Sphere in a Tube

To check the validity of the ALE particle mover, a number of tests were performe
Here, we shall present a few of them. All of the numerical results were obtained under
conditions that they are insensitive (to less than 1%) to further mesh refinement, to incre
of the computation domain size, and to reduction of the time step.

The first test checks the drag on a sphere settling along the center of an infinitely I
cylindrical tube filled with a Newtonian fluid. In the simulation the fluid inertia is turnec
off so that we can compare the numerical results with the exact Stokes flow solutions.
define the ratio of the sphere diamedieio the tube diameteD as the blockage ratio

a=d/D, (79)
and we define the wall factor
K =Fp/Fx (80)

as the ratio of the terminal drdgp exerted on the sphere in the tube to the dfagin the
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- Theoretical exact solution
° Our numerical results
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FIG.7. Wallfactor as afunction of the blockage ratio for the settling of a sphere in a circular tube under Stol
flow conditions. Our numerical results and the theoretical ones from Haberman and Sayre [25] are compare

infinite domain. In our numerical simulations, we calculate the terminal vela€itf a
sphere released in a fluid of viscosityThe drag on the sphere at the terminal velocity is
determined by its effective weight,

b
Fo = 5d%(s = g, (81)
and the drad-, is given by the Stokes drag law,
Foo = 37nVd. (82)

The wall factorK is directly calculated using (81) and (82). Figure 7 compare the wa
factors between the results of our numerical simulations and the theoretical ones fi
Haberman and Sayre [25] at various blockage ratios. The numerical results agree very
with Haberman and Sayre’s [25] exact solution. The maximum deviation is less than 0.4

The next test checks the drag on a sphere settling at finite Reynolds numbers. Figu
shows the drag coefficie@p as a function of the Reynolds number Re at a blockage rati
of @ = 0.3125. The drag coefficient and the Reynolds number of the flow are defined a

Fo 4gd Ps
b _TI9 (s 83
Co oV27d2/8 ~ 3V2 (,of (83)

and

Re= 2Vd. (84)
n
whereV is the terminal velocity of the sphere, and the drag on the sphere is calcula
from (81). The comparison is given between our numerical results and the experime
measurements by McNowet al. [53]. Again our numerical results at finite Reynolds
numbers agree with the experimental results very well. The maximum deviation betwe
our numerical results and the experimental results of McNetwal. [53] is less than 0.5%.
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McNown et al. (1948)
Our numerical results
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FIG. 8. Drag coefficient as a function of Reynolds number. Our numerical results and the experimer
measurements of McNowet al.[53] are compared. The blockage ratio of the flow is- 0.3125.

The third test checks the transient behavior of a sphere settling along the center o
infinitely long circular tube filled with a viscoelastic fluid. The fluid is an Oldroyd-B fluid
with viscometric properties similar to those of the M1 fluid (see Sridhar [66a]). The mater
properties for this fluid arg = 30 poisesi = 0.1 s, pf = 0.868 g cnT3, and the viscosity
ration,/n = 1/8. Inthe test, the density of the sphergds= 3.581 g cn® and the diameter
of the sphere id = 2 cm. Figure 9 shows the evolution of the settling velocity of the sphei

25 | T T T T
; Our numerical results
* Bodart & Crochet [1994]
20 - - - "1
a=01
T 05 CEORUEIE S, o R v, potiems ey T e e . 2
> . —
10r a=0.2 1
94
5 aa 4
0 i ; j i q
0 0.2 0.4 0.6 0.8 1

t

FIG.9. Comparison of the settling velocities obtained from our full 3-D numerical simulations and from tt
2-D axisymmetric simulations of Bodart and Crochet [7]. The sphere is released in a tube filled with a viscoels
fluid. The blockage ratios for the simulations are= 0.1 and 0.2.



454 HU, PATANKAR, AND ZHU

after it is released from rest. The comparison is between the results of our fully thr
dimensional simulations and those of the two-dimensional, axisymmetric, finite-elem
calculations by Bodart and Crochet [7]. Our numerical results agree almost perfectly w
their results. The maximum deviation between the results of our numerical simulations :
those by Bodart and Crochet [7] is less than 0.5%.

12.2. Migration of a Neutrally Buoyant Sphere in a Poiseuille Flow

Direct numerical simulation is an ideal tool for studying the behavior of motion of a ver
few particles in a given fluid flow. It can be used to examine the mechanisms of parti
migration, particle—particle interaction, particle—wall interaction, etc. Here we show
example of the migration of a particle in a Poiseuille flow.

Karniset al.[45] performed numerous experiments on the migration of various particle
including spheres, rods, and disks, in a Poiseuille flow within a capillary tube. The Al
particle mover is capable of simulating the migration of spheres under the same conditior
those used in the experiments by Kareisl.[45]. In our simulations, a neutrally buoyant
sphere is released at a given initial radial position in a fully developed Poiseuille flo
Figure 10 presents two trajectories for the spheres released at radial positipRs-610.21
and 0.68, wher®k = D/2 is the radius of the tube. In the simulations, the fluid propertie
arepr = 1.05g-cm2 andny = 1.2 poises, the flow rate i® = 7.11 x 102 cn’/s, the tube
diameter isD = 0.4 cm, and the sphere diameterds= 0.122 cm. The two trajectories
are compared with the measured ones from the experiments of Kdraig45]. We see
that our numerical results agree very well with the experimental ones with a deviati
of less than 5%. From Fig. 10, we notice that the sphere released near the wall migr
inwards, while the sphere released near the tube center migrates outwards. Therefore,
exists an equilibrium position for the particle in a Poiseuille flow, which is the well-know

1 ] T T

o Karnis et al.[1966]
Qur simulation

1 1 |
0 500 1000 1500 2000
t (sec)

FIG. 10. Comparison of the migration trajectories of a neutrally buoyant sphere calculated in our simulatic
with the ones measured in the experiments of Kaehal. [45].
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Sege-Silberberg effect. Using the ALE particle mover, Zhu [70] is able to perform &
extensively study on the effects of various parameters influencing the particle migratiol
this Poiseuille flow.

12.3. Interaction of a Pair of Particles in a Newtonian Fluid: Drafting—Kissing—Tumbling

One very important mechanism that controls the particle microstructure in flows o
Newtonian fluid is called “drafting, kissing, and tumbling” (l8tial.[29]). There is a wake
with low pressure at the back of a fluidized or sedimenting particle. If a trailing particle
caughtin the wake of the leading one, it experiences a reduced drag and thus falls faster
the leading particle. This is called drafting, after the well-known bicycle racing strategy tt
is based on the same principle. The increased speed of fall impels the trailing particle in
kissing contact with the leading particle. Kissing particles form a long body that is unsta
in a Newtonian fluid, when its line of centers is along the stream. The same couples wt
force along body to float broadside-on cause kissing particles to tumble. Tumbling partic
in a Newtonian fluid induce anisotropy of suspended particles since on the average the
of centers between particles must be across the stream.

Figure 11 displays a numerically simulated drafting—kissing—tumbling sequence. In
simulation, two spheres are dropped in tandem into an infinitely long tube filled with
Newtonian fluid; the fluid properties are selectedpps= 1 g-cm~ andn = 1 poise, the
particle density ips = 2 g- cm™3, the particle diameter i = 2 cm, and the tube diameter
is D = 20 cm. This case corresponds to a particle Reynolds number of 22.

12.4. Interaction of Particles in a Viscoelastic Fluid: Chaining

The interaction of two particles in a viscoelastic fluid is quite different from that i
a Newtonian fluid. The particles still undergo drafting and kissing. However, becat
broadside-on sedimentation of a long body is stable, kissing particles form a long b
that is stable and will not tumble in a viscoelastic fluid under certain conditions (see Jos
[44]). Here we simulate the motion of two spheres of the same size released side-by-
into a tube filled with an Oldroyd-B fluid. The ratio of the sphere diameter to the tut

FIG. 11. Interaction between a pair of particles settling in a Newtonian fluid: drafting—kissing—tumblin
(a) streamlines at = 1.08 s (drafting); (b) streamlines &t= 1.45 s (kissing); (c) streamlines at= 1.67 s
(tumbling); (d) streamlines at= 2.58 s.
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diameter isx = 0.2. The spheres are symmetrically placed in the tube with respect to t
axis of the tube with a separation distance of 1.5 times the sphere diameter. The mat
properties for this fluid arg = 30 poisesjp = 0.1 s, ando;r = 0.868 g cnT?, and the vis-
cosity rationz/n = 1/8. In the test, the density ratio of the solid to the fluighig o = 2,
and the diameter of the spheredis= 2 cm.

Figure 12 displays the snapshots of the positions and orientations of the particle:
various time instants. Figure 13 plots the particle trajectories, whisrthe direction along
the initial particle separation. It is observed that after the particles are released, they at
each other. This attraction is caused by the strong shear flow on the outside surfaces c

t=0s

t=1.44s

o . £=40.13s ”
t=3.30s .

t=38.07s

t=42.58s

: £=50.03s
%r =56.03s

t=11.25s

t=20.07s

t=47.54s

t=30.07s

t=33.05s

t =36.02s

FIG. 12. Snapshots of the sedimentation of two spheres in a viscoelastic fluid.

t=91.53s
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0 500 1000 15I00 2000

FIG. 13. Trajectories of two spheres released side-by-side in a cylindrical tube filled with a viscoelastic flui

particles, which produces a high pressure that pushes them toward each other. Once the
almostin contact, they momentarily form a long body. However, broadside-on orientatior
along body is unstable in a viscoelastic fluid, and the long body tends to turn longside al
the direction of the fall. Thus two spheres turn and eventually form a chain as they sett

If more particles are involved in the system, they tend to form longer chains. Becaus
longer chain falls faster than a shorter one, there exists a critical chain length, or a crit
number of particles in a chain (Patankar and Hu [57]). The chaining of particles in
viscoelastic fluid only occurs when the elastic behavior of the fluid dominates. When b
the fluid inertia and the fluid elasticity are important, the particles tend to form cluste
(Patankar [55]).

12.5. Lubrication in Pressure-Driven Particulate Flows

Direct numerical simulation is very useful for studying the global behavior of a fluid
sparticle suspension. One can both examine the short-time rheology of the suspensio

FIG. 14. Snapshots of the particle positions in a pressure-driven channel flow. White lines represent iso-Ii
of velocity in thex-direction. (a) Initial positions of the particles; (b) particle positions at16.4 s.
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FIG. 15. Velocity component along the channel as a function of the coordinate across the channel.

a given microstructure (that is, the spatial distribution of the particles) and investigate
long-time evolution of the microstructures in the suspension. Here we show an exarn
of investigating the long-time evolution of the particulate flow in a vertical channel drive
by an externally applied pressure gradient. The applied pressure gradient either assist
gravity, causing the heavy particles to fall faster, or is sufficiently strong to pump the flu
and the particles against the gravity. The shear stress at the channel wall is sufficie
high to induce a velocity gradient in the fluid adjacent to the wall, causing the particles
migrate away from the wall. We have lubricated transport of the particulates (Patankar [5
Figure 14 shows a typical case of this lubricated flow. It shows snapshots of 90 partic
falling in a Newtonian fluid at the initial instant and at a later time. For this simulation, tr
channel width is 12 times the particle diameter, and the volume fraction of the particles
¢ = 26.8%. The Reynolds number of the flow is

_ prvd
n

Re = 1226, (85)

where we have used the slip velocity between the solid and fig, (os — pr)gd?/4n.
The nondimensional pressure gradient is defined as

1 dp

_ 2P 86
$9(ps — pr) dx (86)

p
and the density ratio iss/ o = 1.1. We observe that the particles migrate toward the cente
of the channel forming a prominent core. Figure 15 shows that the velocity profile of t
fluid becomes blunt as the result of migration of the particles away from the wall and th
concentration at the center of the channel. The core nearly falls like a rigid body so that
velocity of the fluid varies almost linearly from the walls to the particle-rich core owin
to the absence of particles in that region. This motion can be considered to be simila
that established when a porous piston that occupies the zone of plug flow falls insid
channel.

13. SUMMARY

We have described a numerical method (the ALE particle mover) for simulations of fluit
solid flow systems. This method is based on a combined formulation of the fluid and parti
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momentum equations. It uses the arbitrary Lagrangian—Eulerian (ALE) technique wit
moving, unstructured, finite-element mesh to deal with the movement of the particles
this method the moving finite-element mesh in the fluid flow and the particle positions :
updated explicitly, while the fluid flow and the particle velocities are solved implicitly,
each time step. We have shown that this scheme is stable. A mesh movement and uj
strategy is described, and the remeshing criteria are discussed. Detailed schemes ft
projection of the flow field from one mesh to another are presented. Different models
particle collision are also examined.

We next computed the sedimentation and migration of spheres in both Newtonian
viscoelastic fluids, and our results agree quantitatively with those in the literature. We &
examined the interaction of the sedimenting particles in the Newtonian and viscoela
fluids, and we observed the contrasting behavior of the particles: drafting—kissing—tumb|
in a Newtonian fluid against drafting—kissing—chaining in a viscoelastic fluid. Last, v
showed the long-time evolution of the microstructure of a fluid—particle suspension ¢
demonstrated the rheological effect on the suspension.
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